说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非微扰场论
1)  nonperturbative field theory
非微扰场论
2)  Kapitza-Dirac effect
非微扰理论
1.
The development of laser technique has made it possible to do many new experiments,and many new phenomena,such as above-threshold ionization(ATI),Kapitza-Dirac effect,high order harmonic generation etc.
这些现象用原有的光电理论已无法解释,从而发展了一些多光子电离的理论,其中以美国SouthernUniversity的郭东升教授及其合作者所发展的非微扰理论较为引人关注。
3)  Nondegenerate perturbation theory
非简并微扰论
4)  nonperturbative scattering theory
非微扰量子散射理论
1.
Using a nonperturbative scattering theory developed by Guo,Aberg and Crasemann(GAC theory)the angular distributions of electrons in above threshold ionization of Krypton(Kr)atoms irridated by a bichromatic phase-controlled laser field of linear polarization is studied.
采用基于Guo,Aberg和Crasemann发展的强激光场中的非微扰量子散射理论(GAC理论),研究了线偏振双色激光场中氪(Kr)原子阈上电离的光电子角分布,双色激光场由一系列相同的单周期激光脉冲组成。
5)  Nonperturbative semiclassical theory
非微扰半径典理论
1.
Nonperturbative semiclassical theory can resolve this problem.
应用非微扰半径典理论解决了微扰半经典理论对于远高于阈值处的超阈值运转的情形其精度就有比较大的偏差的问题,应用非微扰半经典理论处理接近阈值甚至远高于阈值处的超阈值运转的情形就能得到较精确的结果,不仅对弱信号光强近阈值情形下更精确,而且也适用于强信号光强高阈值处的超阈值运转的情形。
6)  Perturbation field
微扰场
补充资料:量子力学的微扰论
      解薛定谔方程的一种常用的近似方法。一个量子体系,如果总哈密顿量的各部分具有不同的数量级,又对于它精确求解薛定谔方程有困难,但对于哈密顿量的主要部分可以精确求解,便可先略去次要部分,对简化的薛定谔方程求出精确解;再从简化问题的精确解出发,把略去的次要部分对系统的影响逐级考虑进去,从而得出逐步接近于原来问题精确解的各级近似解。这种方法称为微扰论。
  
  对于哈密顿量H不显含时间的体系,其不含时间的薛定谔方程为
  
   (1)
  如果 (2)
  其中为未受微扰的哈密顿算符(主要部分),为微扰项(次要部分),,λ是用来表示微扰强度特征的小参数。若的本征方程
  
   (3)
  已解出,是未受微扰体系的能量,是与之相应的波函数。当考虑到的作用后,体系的能量与波函数将发生微小变化,此变化依赖于参数λ,于是体系能量和波函数可按λ的幂次作微扰展开
  
   (4)
(5)
  当λ=0时,显然有,且E=E(0),ψ=ψ(0)。将式(4)、(5)代入式(1),按λ幂次得到一系列确定E(0)、ψ(0),E(1)、ψ(1),...的等式。实际上λ的幂次标志着数量级的大小,依次地,E(0)、ψ(0)分别为E、ψ的零级近似能量和波函数,它们已由式(3)解出,由零级近似解以及,可进一步得到能量和波函数一级修正值E(1)和ψ(1),也就是得到了E、ψ的一级近似解E(0)+ E(1)、ψ(0)(1),以此类推,可逐级求出高级近似解。计算表明,准确到n(n=1,2,...)级近似的能量等于对于归一化的第n-1级近似波函数下的平均值。以上是定态微扰论的物理思想。
  
  当体系的哈密顿量显含时间时,体系无确定能量,只要求波函数的近似解,处理问题的基本思想与定态微扰论相同,所不同的是将解不含时间的薛定谔方程改为解含时间的薛定谔方程。这种微扰论是含时间的微扰论。微扰论的具体形式虽是多种多样的,但都体现了这样一个特点:微扰项对未受微扰体系的解影响很小,可以通过逐级近似求解。
  
  利用微扰论处理实际问题时,如果较小得多,使得微扰展开式收敛得较快,就只要计算一、二级微扰便可得到较为满意的结果。量子力学中的微扰论广泛地应用于原子和分子物理学中,它常与量子力学的变分法等近似方法结合起来使用。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条