1) Von Nemann regular rings
Von Nemann正则环
2) Von Neumann regular ring
Von Neumann正则环
1.
In this paper, we investigate von Neumann regular rings and weak dimension of rings.
利用模的自同态研究 von Neumann正则环与环的弱维数 ,给出了 von Neumann正则环的新的刻划 ,同时也刻划了弱维数 n (n 0 )的环 。
3) Von Neumann regular rings
Von Neumann正则环
1.
In first part of the paper,the authors introduce the definition of PFP-modules,in terms of which they get a new characterization of Von Neumann regular rings.
首先引入PFP-模的定义,并给出了Von Neumann正则环的一些新的刻划。
2.
Finally,we study Von Neumann regular rings and semisimple rings by investigating the relations among divisible modules,flat modules and other four kinds of modules with extending properties.
最后利用可除模、平坦模和其他几类具有延拓性质的模之间的关系来研究Von Neumann正则环和半单环。
4) von Numman regular ring
von Neumman 正则环
5) Von Neumann regular differential rings
Von Neumann正则微分环
6) graded Von Neumann regular ring
分次Von Neumann正则环
1.
We prove that S is a graded right V-ring if and only if R is a graded right V-ring,S is graded PS-ring if and only if R is a graded PS-ring,and S is a Von Neumann regular ring if and only if R is a graded Von Neumann regular ring.
本文引进了分次环的分次Excellent扩张概念,设S=⊕_(g∈G)S_g是R=⊕_(g∈G)R_g的分次Excellent扩张,证明了S是分次右V-环当且仅当R是分次右V-环,S是分次PS-环当且仅当R是分次PS-环,S是分次Von Neumann正则环当且仅当R是分次Von Neumann正则环。
补充资料:正则环
正则环
*-regular ring
‘正则环卜一佣.山r对l招;一pe口朋钾Oe劝则。J 带有对合反自同构俐~“*的正则环(仰Nh助-姗愈义下的)(比州肚nllg(谊the别级侣e ofvon卜犯u-~”,使得戊扩=0蕴涵“二0二正则环的幂等元。称为一个投影算子(p咧戊tor),若。*二。.,正则环的每个左(右)理想由唯一的投影算子生成.这样可以谈到·正则环的投影算子的格.若格是完全的,则是一个连续几何(contjnuous罗。能好).一个有齐次基“t,…,a。(。)4)的有补模格(m团过肚妞-石ce)(亦见有补格(】atti优俪伍comPlemet出))是有正交补的格,当且仅当它同构于某个,正则环的投影算子的格.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条