说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 倍周期解
1)  preiod-2 circle
倍周期解
2)  Period-doubling
倍周期
1.
Study on the Fine Structure of the Period-doubling Bifurcation in Friction System;
摩擦系统倍周期分岔细结构的研究
2.
Simulations of models with different parameters show that the increasing of moment of inertia will result in the appearance of period-doubling and chaotic gaits.
结果表明,转动惯量增大会导致倍周期步态到混沌步态的产生,足半径减小和质心位置降低也会导致分岔的出现。
3)  period doubling
倍周期
1.
45543; the cyclic fold curve gets closer and closer to the Hopf curve and finally intersects the Hopf curve at a singular point; the period doubling points also get closer and final.
4 5543处 ) ;同时圈折 ( cyclic fold)曲线也越来越靠近Hopf曲线 ,并在 Hopf曲线的稳定与不稳定临界点处与Hopf曲线相交 ;倍周期分岔点也随着越来越靠近 ,最终在P1≈ 0 。
2.
The result of the calculation shows that may the undergo period doubling or Hopf bifurcations,in accordance with Floquet multipliers,the transition boundaries of the system are obtained and the effect of the variations of lubric.
计算结果表明,系统存在倍周期和Hopf分叉。
4)  period dubling
周期倍分
1.
Ithasbeen found thatthe periodic change and period dubling of the gross nationalproduct have taken place under the regulation of grow ing rate w hen the grow ing rateleads to a certain value,chaosbehaviorin the gross nationalproduct willappear.
研究了国民经济变速调控增长模型,分析了调控过程中经济增长出现的稳态变化、周期变化、周期倍分及混沌(chaos)行为。
5)  cycle-times
周期倍化
1.
The logistic equation with one-dimension is taken as tool to prove the chaotic mechanism that a kind of non-linear Lur e system realized through cycle-times in the paper.
以一维逻辑斯蒂方程为工具,论证了一类非线性Lur’e系统通过周期倍化达到混沌的机制,深入研究了该系统由混沌转化为有规律的周期性问题,并通过仿真分析了Lur’e系统的动力学行为,得出了这类系统在满足参数条件下,随着滤波作用的由弱到强,系统的最终动力学行为依次按着不稳定的发散状态、混沌状态、稳定的周期态、平衡态的顺序变化。
6)  period-halving
周期倍减
1.
The dynamic complexities of these models include Hopf bifurcation,Hopf bifurcation reversal,period-doubling bifurcation,period-halving,attractor crises,chaotic bands with narrow or wide periodic windows,intermittent chaos,and supertransient behavior.
结果表明:各种类型的模型尤其是聚集效应模型都包括多种复杂的动态:Hopf分支、倒转Hopf分支、倍周期分支、倒转倍周期分支(周期倍减)、草叉分支、倒叉分支、吸引子突变(危机),含有窄、宽周期窗的混沌段、多吸引子共存、阵发混沌及超变换行为。
补充资料:庞加莱周期解
      见周期解理论。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条