2) surface spline
曲面样条
1.
Based on forming irregular triangular network, the authors adopted surface spline as interpolation algorithms, and then used Open GL to light, successfully realized the modeling of bedded mineral deposit, making it be able to rotate in a certain angle and direction.
针对层状矿床的真实形态往往受到多种地质因素的制约和对矿体的开采、设计有重要影响的问题,在构造不规则三角网的基础之上,采用曲面样条函数对三角网数据进行平滑插值,然后采用OpenGL实施光照,成功地实现了层状矿床的模拟,使其能以一定的角度和方位旋转,放大和缩小,并且能实现任意方向的剖面剖切。
2.
The coefficients of lift and pitch moment of experimental aerodynamic forces were introduced into the longitudinal maneuvering flight computation by use of surface spline,and flight loads on overall aircraft were elastically corrected based on pressure distribution of experimental aerodynamic forces simultaneously.
通过曲面样条插值将试验气动力的升力系数和俯仰力矩系数引入纵向机动飞行过程的计算,同时基于试验气动力的压力分布进行全机飞行载荷的静气动弹性修正。
3) spline surface
样条曲面
1.
Based on B-net subdivision technique, a new algorithm on displaying bivariate spline surface, defined on triagular domain with three direction mesh,is discussed.
本文应用B网分裂加密的思想,讨论在计算机上快速实现二元三方向网格上三角域样条曲面的显示。
2.
The paper introduces an algorithm for creating smooth spline surfaces over control triangular meshes capable of outlining arbitrary free-form surfaces with or without boundary.
介绍了一种在控制三角形网格上创建光滑样条曲面的算法,该控制网格能够刻画具有或没有边界的任意自由曲面。
3.
The spline surface and the original surface are combined to generate a new rational surface by adding the weights.
利用样条曲面和原曲面加权组合构造一个新的有理曲面,该曲面通过插值原曲面的等距曲面上的采样点,从而逼近等距曲面。
4) surface sampling
曲面采样
5) lofted surface
曲面放样
6) sectional sample
截面样品
补充资料:单侧曲面与双侧曲面
单侧曲面与双侧曲面
one - sided and two - sided surfaces
单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条