1) Beta-spline surface
Beta样条曲面
2) spline/Beta spline
样条/Beta样条
3) Beta-spline
Beta样条
1.
Analysis and Application of the Parameters in Beta-spline;
Beta样条中参数β_1和β_2的匹配分析与应用
2.
Beta-spline and B-spline are used to lofting the transverse section curves and waterlines,reads the hull data from Access spreadsheet,checks the fairness of constructed spline curves,and makes revision to the position of certain data points,to improve the over all fairness of hull shape.
系统利用计算机图形平台来模拟船体数学放样和手工光顺,用Beta样条和B样条两种技术来拟合型线,实现船体水下部分型线的交互设计。
4) Beta spline
Beta样条
1.
Proceed with smooth character guide line,curvi li near curvature calculation formula of thrice Beta spline construction was educed and used in the system of actual mutual design,and the result was compared with curve smooth character of thrice B spline.
从光顺准则入手 ,推导出三次Beta样条构造出的曲线的曲率计算公式 ,并将其运用于实际的交互设计系统中 ,与三次B样条曲线光顺性进行了比较。
2.
The independent variety of shape controls parameters in Beta spline and the matching disciplinarian of parameters were studied.
本文对Beta样条中形状控制参数 β1和 β2 独立变化及参数对的匹配规律进行了研究 ,分析了形状控制参数在Beta样条反算拟合时对曲线形状的影响 ,并在实际中有效地应用 ,取得较好的效
5) Beta-like splines
拟Beta样条
1.
If the matrix is nonsingular, lower triangular and totally positive, there exists Beta-like splines having minimal compact supports.
拟Beta样条函数是基于ECT组E = {1, x , x~2 ,。
6) surface spline
曲面样条
1.
Based on forming irregular triangular network, the authors adopted surface spline as interpolation algorithms, and then used Open GL to light, successfully realized the modeling of bedded mineral deposit, making it be able to rotate in a certain angle and direction.
针对层状矿床的真实形态往往受到多种地质因素的制约和对矿体的开采、设计有重要影响的问题,在构造不规则三角网的基础之上,采用曲面样条函数对三角网数据进行平滑插值,然后采用OpenGL实施光照,成功地实现了层状矿床的模拟,使其能以一定的角度和方位旋转,放大和缩小,并且能实现任意方向的剖面剖切。
2.
The coefficients of lift and pitch moment of experimental aerodynamic forces were introduced into the longitudinal maneuvering flight computation by use of surface spline,and flight loads on overall aircraft were elastically corrected based on pressure distribution of experimental aerodynamic forces simultaneously.
通过曲面样条插值将试验气动力的升力系数和俯仰力矩系数引入纵向机动飞行过程的计算,同时基于试验气动力的压力分布进行全机飞行载荷的静气动弹性修正。
补充资料:B样条曲面
B样条曲面
B-spline surface
B yangtiao qumianB样条曲面(Bsp一ine surface)用分段B样条多项式函数及控制点网格定义的面。基于B样条曲线,可以得到B样条曲面的表示式。给定(m+1)(n十l)个空间点列凡(i=0,1,…,m,]=0,1,…,n),则s(二,w)一艺艺尸。从,*(。)凡,,(w),该二0少=O u,功任[0,1」定义了kXz次B样条曲面。式中从,*(u)和凡,,(w)分别是k次和l次的B样条基函数,由凡组成 的空间网格称为B样条曲面的控制点网格。上式 也可写成如下的矩阵式称(u,二)二认呱几M王w王,y任[l,。+2一划 z任[l,n+2一z〕,u,wC〔O,1」式中y,z—表示在u,w参数方向上曲面片的 个数。 Uk=[。‘一‘,uk一2,…,u,1〕, 钱二仁砂一’,砂一2,…,w,1〕, 凡,二氏,i任[y一1,y+k一2〕, ,任仁z一1,z+z一2] 凡是某一个B样条面片的控制点编号。最常用的 是二、三次均匀B样条曲面的构造。 (1)均匀双二次B样条曲面 已知曲面的控制点巧(i,]=o,1,2),参数u、 二,且O镇u,w簇1,k=l=2,构造步骤是: ①沿w(或u)向构造均匀二次B样条曲线,即 有 ,「‘一“P0(w,一L矿“」[一::侃同哪 WMs经转置后尸。(w)=「尸oo尸。,尸。2〕磷wT;同上可得P,(二)=[尸,。尸,,尸,2」M五WT pZ(二)=[pZ。p21 p22]M百wT ②再沿u(或w)向构造均匀二次B样条曲线,即可得到均匀双二次B样条曲面。 ,L 11﹁.!一|到泊恤、、/)pp(w嘿的嘿编s(u,w)二UM日(w T W TB M翻川州护P PP=UM白 匕PZo P21简记为s(u,二)二〔侧砂呵百wl (2)均匀双三次B样条曲面 已知曲面的控制点八(£,j=o,1,2,3),参数u,二且“,w任【0,1],构造双三次B样条曲面的步骤同上述,其矩阵形式是 S(u,w)=L时正声吸至百wT, 门几创川川旧洲翻叼--302 1222犯尸尸尸P尸尸尸尸尸冲尸峥 一一 P月J月j 3一6,l八、︶n”4.内J,1卜|匡IL 1一6 一一 姚双三次B样条曲面如图1所示。图1双三次B样条曲面
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条