说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 随机双线性系统
1)  Random Doublelinear System
随机双线性系统
2)  bilinear stochastic discrete systems
双线性随机离散系统
1.
In this paper the Problsem of covariance assignment control for bilinear stochastic discrete systems is introdued and discussed.
本文提出并讨论了一类双线性随机离散系统的协方差配置控制问题。
3)  bilinear continuous stochastic system
双线性连续随机系统
4)  stochastic nonlinear systems
随机非线性系统
1.
Stabilization of a class of stochastic nonlinear systems by output feedback;
一类随机非线性系统的输出反馈全局镇定
2.
State feedback stabilization for high-order stochastic nonlinear systems;
高阶随机非线性系统状态反馈镇定
3.
Output-feedback control for stochastic nonlinear systems
随机非线性系统的输出反馈控制
5)  stochastic linear system
随机线性系统
6)  nonlinear stochastic system
非线性随机系统
1.
Recursive least squares of nonlinear stochastic system owns forgetting factor;
非线性随机系统具有遗忘因子的递推最小二乘法
2.
The optimal control problem is firstly established for a nonlinear stochastic system.
首先建立非线性随机系统的最优控制问题,并介绍通过随机平均法导出平均系统、再由随机动态规划原理确定控制律的平均系统的非线性随机最优控制方法。
3.
A filter algorithm of bayesian state estimation using piecewise constant was proposed for a nonlinear stochastic system with white noises.
针对具有高斯噪声的非线性随机系统状态估计问题 ,提出了一种基于分段常值的贝叶斯状态估计滤波算法 。
补充资料:双线性系统
      在线性状态方程(见状态空间法)中引入状态变量和控制变量的交互乘积项所导出的一类系统。双线性系统状态方程的一般形式是
  
  
  
  
  式中分别是状态向量和控制向量,上标T表示转置;A,Pi和B均为常系数矩阵;dx/dt表示x对时间t的微商。这类状态方程的特点是,它相对于状态或控制在形式上分别是线性的,双线性的名称即源于此。但同时相对于状态和控制来说,系统则不是线性的。它实际上是一类具有比较简单形式的特殊非线性系统。双线性系统模型是对线性系统模型的推广,它能更准确地描述一类实际过程。生物繁殖过程就是一个典型的例子,用状态变量x表示种群中生物体的数量,控制变量u表示可人为控制的净增殖率,则控制种群中生物体数量的繁殖过程可用形式为dx/dt=ux的一个双线性系统来描述。双线性系统模型已被广泛用于工程、生物、人体、经济和社会问题的研究。例如,化学反应中的催化作用问题;人体内的水平衡过程、体温调节过程、呼吸中氧和二氧化碳交换过程、心血管调节过程等问题;细胞内的某些生物化学反应问题;社会和经济领域中的人口问题,动力资源问题,钢铁、煤炭、石油产品生产问题等。
  
  双线性系统的研究始于60年代,70年代以来得到了广泛的重视和迅速的发展,成为非线性系统研究中比较成熟的分支之一。双线性系统理论中已有的主要结果为:
  
  ① 双线性系统具有变结构系统的一些特征,因而有一定的自适应性(见适应控制系统)。
  
  ② 对于控制变量受限制(即控制变量的大小必须在一定的界限内)的情况,已经找到用频率域语言表达的稳定性条件。
  
  ③ 双线性系统具有比线性系统更好的能控性。即使控制变量受限制,系统仍可能是完全能控的。已经获得系统完全能控的一些充分条件。
  
  
  ④ 用李雅普诺夫稳定性理论能够求得双线性系统的镇定控制解,即可找到一个反馈控制律u=u(x)使系统实现全局稳定。这种控制函数是开关型或饱和型的,开关曲面(或曲线)对状态变量而言是二次曲面(或曲线)。
  
  ⑤ 采用动态规划或极大值原理已能解决双线性系统的一些最优控制问题,如最速控制,最省燃料控制,以及离散双线性系统和随机双线性系统的最优控制等。
  
  双线性系统理论已有不少实际应用的例子。例如核电站、核动力装置中核裂变和热交换过程的最优控制,人口预测和控制等。
  
  参考书目
   R.R.Mohle,Bilinear Control Processes,Academic Press, New York,1973.

  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条