1) linear discrete stochastic system
线性离散随机系统
1.
Kalman filter used in linear discrete stochastic system has good convergence and the ability to remove high frequency noises.
卡尔曼滤波用于线性离散随机系统具有非常好的收敛性和滤除高频噪声的能力。
2) nonlinear discrete-time stochastic system
非线性随机离散系统
1.
In this paper, the extended Kalman filter of a nonlinear discrete-time stochastic systems is discussed and developed, where the observation and the system noise is uncorrelated and both white.
本文讨论非线性随机离散系统的扩展Kalman滤波形式。
4) random nonlinear discrete time systems
随机非线性离散系统
5) nonlinear discrete stochastic system
非线性离散随机系统
1.
Without knowing the model of the system and the stochastic characteristics, based on neural networks and the presented theory, this paper presents an adaptive filtering design method for nonlinear discrete stochastic system.
基于这一理论在系统模型和噪声统计未知情况下,提出一类基于神经网络的非线性离散随机系统自适应滤波器的设计方法。
6) singular discrete stochastic linear system
广义离散随机线性系统
补充资料:离散随机信号处理
离散随机信号处理 discrete random signal processing 利用数字运算,对离散随机信号进行各种滤波处理、离散变换和谱分析。随机信号是一种非确定性的信号,如热噪声信号发生器输出的电信号,飞行器起飞时的结构振动,以及起伏海面的波动高度等。它们的共同特点是无法预测其未来瞬间的精确值。处理的目的是便于从中提取有用的信息,削弱信号中的多余信息量,便于估计信号的特征参数,或变换成易于分析和识别的形式等。 随机信号处理的主要理论基础是信号检测理论、估计理论和随机过程理论。根据理论分析,随机信号的不同样本函数在同一时刻的值往往是不确定的,因而只能用样本函数集的统计平均来描述,如用均值、均方值、方差、概率密度函数、相关函数和功率谱密度函数来描述随机过程的特性。但是,在大多数情况下,被处理的随机信号是具有各态历经的平稳随机过程,它的样本函数集平均可以用某一样本函数的时间平均来确定,这给随机信号的分析和处理带来很大方便。虽然平稳随机信号本身是不确定的,但它的相关函数是确定的,可以利用快速变换算法来计算。相关函数的傅里叶变换或Z变换表示随机信号的功率谱密度函数,简称为功率谱。功率谱是描述随机信号基本特征的重要参数,而功率谱估值是按照实际观测的有限数据估计得到的,它必然与真实的功率谱值有差别。为了减小谱分析偏差和提高谱分辨率,产生了多种谱估计方法。 在非平稳随机信号处理中,非平稳随机过程的特征函数一般是随时间而变化的,不能再用时间平均代替集平均,只能用组成过程的样本函数集的瞬时平均来描述其特性。因而求得的功率谱是随时间变化的谱。这种时变功率谱的计算方法仍在研究中。卡尔曼滤波和最大熵法是处理非平稳随机信号的有用方法。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条