1) Nonlinear Least-Square Identification
非线性最小二乘辨识
2) nonlinear least square
非线性最小二乘
1.
Implementation of nonlinear least square with global convergence in Forstat
全局收敛的非线性最小二乘在Forstat中的实现
2.
The Gauss-Newton method is applied to solve the nonlinear least square equations and a simple and applicable iterative formula is deduced, which is locally convergent and divergent sometimes.
介绍了采用非线性最小二乘方法回归乙烯深度氧化反应动力学方程。
3.
Through transferring solution procedure,the problem was inverted into nonlinear least square optimization process with constraint conditions in two stages using function lambertw and function lsqnonlin.
对生态学领域的高精度参数确定问题提出了一种解决方案,结合实例,利用肖维奈特准则进行回归分析筛选数据,利用MATLAB工具中vpa和dlmwrite函数来保证数据传递的精度,并变换求解格式利用lambertw函数和lsqnonlin函数将问题转化为带约束条件的非线性最小二乘两级优化过程加以解决。
3) nonlinear least squares
非线性最小二乘
1.
Algorithm of nonlinear least squares adjustment of any plane networks with coordinates computed automatically;
任意平面网坐标自动解算的非线性最小二乘平差算法
2.
A new newton iterative algorithm for solving nonlinear least squares problem;
一种新的求解非线性最小二乘问题的牛顿迭代算法
3.
Unified model and ill-posed property of numerical iterative formula for solving nonlinear least squares problem;
非线性最小二乘问题数值迭代法的统一模型及其不适定性
4) nonlinear LS
非线性最小二乘
1.
On the basis of the homotopy arithmetic, this paper puts forward a uniform model of nonlinear least square (LS) adjustment, which can be used not only for the nonlinear LS adjustment of the rank defect problems, but also for that of the rank full problems.
基于非线性同伦思想 ,提出了非线性同伦最小二乘平差统一模型 ,该方法既可适用于满秩网非线性最小二乘平差 ,也可适用于秩亏网非线性最小二乘平差。
6) discrimination on least square class
最小二乘类辨识
1.
In this paper, Using popov theory of super stability, the author puts forward the method of self-adapted parameter estimation for reference models which is different from the thought of discrimination on least square class.
运用POPOV超稳定性理论,提出了与最小二乘类辨识思路不同的参考模型自适应参数估计方法。
补充资料:非线性最小二乘拟合
分子式:
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条