说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 扰动程度
1)  disturbing degree
扰动程度
2)  interference degree
干扰程度
1.
It gives the methods and equations of the affection of the cochannel interference on the communication system based on the concepts of cochannel interference degree on the condition that only one interference exists.
同时基于同频道干扰程度的概念,给出了当存在一个同频道干扰时其干扰程度的计算方法和公式,并指出这种方法同样适用于多个干扰同时存在的情况。
3)  perturbation equation
扰动方程
1.
In the regular solution problem of the perturbation equation,the solution of convergence order is important.
在扰动方程的正则化求解问题中,解的收敛性估计是十分重要的。
2.
This paper gives some new and easy to test criteria, can discriminate invertibility of A class of nondiagonally dominant matrices, and gives the upper bound of |A-1| and the error estimate of solving relevant perturbation equations (A + A)(x + 6x) = b+b by simple and convenient method.
本文给出一些新的、易于检验的判别定理,能通过简便的方法来判别一类非对角占优矩阵A的可逆性、给出‖A~(-1)‖的上界以及解相应扰动方程组(A+δA)(X+δx)=b+δb的误差估计,具有较好的实用价值。
4)  perturbed equations
扰动方程
1.
An iterative method is designed to advance the Ishikawa iteration and solve perturbed equations of accretive operators.
主要研究了用迭代法求解增生算子紧扰动方程 。
5)  round trip optical length fluctuation
环程扰动
6)  disturbed equation
扰动方程
1.
This paper was based on the optimizing regular solution of general disturbed equation in paper [1], then discussed its asymptotic convergence.
针对文献 [1]中所给一般扰动方程的Tikhonov优化正则化解法 ,讨论了该解的渐进收敛
2.
We discuss the stability of the solutions of the singalar integral equations with Cauchy kernel in L 2 ω and get the estimation of the solutions of the disturbed equations, and prove the continuous dependence of the solutions for known functions.
讨论了在区间[-1,1]上带Cauchy核奇异积分方程在L2ω[-1,1]中解的稳定性,获得了扰动方程解的估计,证明了方程的解对于已知函数的连续依赖
3.
This article gives the stability conditions,gets the estimation of the solutionfor the disturbed equation, and proves the continuing dependence of the solution for theknown functions.
讨论了H(ω)上带Hilbert核奇异积分方程解的稳定性,给出了稳定性条件,推得了扰动方程解的估计,证明了方程的解对于已知函数的连续依赖性。
补充资料:持续作用扰动下的稳定性


持续作用扰动下的稳定性
stability in the presence of persistently acting perturbations

  持续作用扰动下的稳定性仁咖幽勺协触脚。曰盆兄of哪滋众团ya曲嗯碑由州画d.侣;yc功后”.即c几np班noc”-,。110朋益e拍即IO四,x BO3M脚日e朋,xj 初值问题 交=f(x,r),x(t。)二x。,x任R”(*)之解x。(t)(t)t。)的如下性质:对每一个。>O都有一个占>O使得对每一个适合不等式!y。一x。}<占的夕.,,以及满足以下条件的每一个映射g(x,:): a)在集合 E:={(x,t):t)t。,{x一x。(t)i<。}上g和g,都连续; b)s印(:,,)。::}夕(x,t)一f(x,t)I<吞,初值问题 乡=g(y,t),夕(t。)=夕。,夕任R”的解y。(t)对一切t)屯,有定义且满足不等式 suP}y。(t)一x。(t)}<£. r)t。 Bohi定理(B心h】t玩”~)(【11).设初值问题(,)有解x(t),t)t。,满足以下条件: 幻f和fx对某个。。在瓦。上连续; 刀)s叩。,:。4}人(x(t),t)}}<+的: 下)映射f在点(x(t),‘),t)t。,处对x可微,这个可微性对t)t。是一致的,即 s叩兴}厂(二(‘)+,,,)一f(、(。),:)+ ,》万。}y} 一人(x(t),亡)yl~0当y一,O时.这时,为使初值问题的解在持续作用的扰动下为稳定,必要与充分条件是:方程组又=厂(x,t)沿解x(t)的变分方程(粗血tiona】叹业tio璐)组的上奇异指数(见奇异指数(s泊g止汀exponents))小于零. 若f(x,t)不含t(即自治系统),而解x(t)为周期的或常值的;或者f(x,t)对t有周期而解x(0也有相同的(或可公度的)周期或者常值,则:l)Bohi定理中所陈述的一致可微性条件是多余的(它可从定理的其他条件导出);2)方程组交=f(x,t)沿解x(t)的变分方程组的上奇异指数可以有效地算出来.【补注】持续作用扰动下的稳定性也称为持续扰动下的稳定性(stab正ty Under pelsis招ni perturhatio幻)或全稳定性(total stabiljty).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条