1) density disturbing
密度扰动
1.
In this paper,we derive the density disturbing equations from S.
从宇宙学基本方程组出发,导出与之相应的密度扰动方程组,并解出带有参数m的特解。
2) electron density perturbation
电子密度扰动
1.
The one\|dimensional electron density perturbation is derived by using the cold fluid equation, Poisson s equation and the continuity equation, which is generated by a driving laser pulse propagating through a tenuous plasma.
利用一维动量方程、连续性方程和泊松方程 ,导出了由于短脉冲激光入射到稀薄等离子体中而引起的电子密度扰动 ,它与入射激光密切相关 。
3) disturbance depth
扰动深度
4) disturbing times
扰动强度
1.
The influence of disturbing intensity, disturbing times etc.
研究了漂白苇浆CPAM的用量、CPAM与纸浆混合时扰动强度及扰动时间等对助留助滤效果的影响。
5) disturbance degree
扰动度
1.
The coefficient after disturbance is achieved with the disturbance degree proposed by Hong & Onitsuka;After validation by former research,the coefficient is discussed.
根据Hong & Onitsuka的扰动度定义,推导了取样扰动对固结系数的影响,并引用了大量的试样数据验证了分析的合理性。
2.
According to the fact of the undrained shear strength decreasing during field vane test,applying the cylindrical expansion theory,it is assumed that saturated soft clay satisfies Tresca yield criterion,and then the disturbance degree function is given on the basis of the sensibility of saturated soft clay,and the function D is logarithm function of the plastic radius.
根据原位十字板试验扰动导致饱和软黏土不排水强度降低的事实,应用圆柱形孔扩张理论,假设饱和软黏土在塑性阶段满足Tresca屈服条件,提出了一种基于饱和软黏土灵敏度的扰动度D且是塑性区半径的对数函数。
3.
According to the fact of the undrained shear strength decreasing during field vane test, applying the spherical expansion theory, it is assumed that saturated soft clay satisfies Tresca yield criterion, and then the disturbance degree function D is given on the basis of the sensibility of saturated soft clay.
根据原位十字板试验过程中,对饱和软粘土扰动导致其不排水强度降低的事实,应用球形孔扩张理论,假设饱和软粘土在塑性阶段满足Tresca屈服条件,提出了一种基于饱和软粘土灵敏度的扰动度函数D。
6) disturbing velocity
扰动速度
1.
In order to keep the algorithm from premature stagnation, disturbing velocity is used to increase the diversity of particle swarm.
针对旅行商问题,提出了一种改进的离散粒子群优化算法,根据优化问题及离散量的特点,对粒子的速度、速度的相关运算规则和粒子的运动方程进行了重新定义,为防止算法的早熟停滞现象,提出用扰动速度来增加粒子群的多样性,为提高算法的求精能力,设计了一种高效的近邻搜索算子来提高粒子的适应值,使算法在空间探索和局部精化间取得了很好的平衡。
补充资料:非密度制约因素(见密度制约因素)
非密度制约因素(见密度制约因素)
l焦非密度制约因素见生态因素、密度制约后
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条