说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 圆截面偏压承载力
1)  the bearing ability of partial compression in circular section
圆截面偏压承载力
2)  bearing capacity
截面承载力
3)  compressive load-carrying capacity of normal cross section
正截面受压承载力
4)  normal section strength
正截面承载力
1.
In order to ensure the relibity of normal section strength of PRC structures,the principe of the secondary moment and the secondary axial force are analyzed,two kinds formulas of normal section strength of PRC structures are derived,and the conditions of the formulas are discussed.
为保证预应力混凝土(Prestressed Reinforced Concrete,PRC)结构正截面承载力的可靠性,分析了次弯矩和次轴力的产生原理,推导出了预应力混凝土结构两种形式的正截面承载力的计算公式,并进行了讨论。
2.
The formula for calculating normal section strength of flexural HFRC beams is presented.
给出了钢筋钢纤维高强混凝土受弯构件的正截面承载力计算公
3.
It is troublesome to calculate the normal section strength of SRC beams if using the original cross section.
如果直接按照这种截面计算劲性混凝土梁正截面承载力 ,工作比较繁琐 ,应用截面转换法可以有效地解决这一问题 ,同时还可以简化判定组合截面中性轴位置的过程。
5)  normal section bearing capacity
正截面承载力
1.
Convenient calculation method for normal section bearing capacity of reinforced concrete beams subjected to bending;
钢筋混凝土受弯构件正截面承载力简便计算法
2.
According to GB50010-2002 Code for design of concrete structures, the normal section bearing capacity of reinforced concrete beam subjected to single bending is determined.
根据GB50010—2002《混凝土结构设计规范》规定的单向受弯构件正截面承载力计算方法确定梁的单向受弯正截面承载力。
3.
A set of more accurate and reasonable formulas for calculating normal section bearing capacity of steel reinforced concrete (SRC) beams is derived based on the introduction to the simple and ordinary superposition methods of computing the normal section bearing capacity of the SRC beams, the defects of these methods are also analyzed.
在对钢骨混凝土 (SRC)梁正截面承载力计算方法即简单叠加法和一般叠加法进行介绍的基础上 ,分析了这些计算方法存在的不足和缺陷 ,研究并推导出了一组更为精确和合理的SRC梁正截面承载力的计算公式 ,并将这一新的计算方法与简单叠加法和一般叠加法进行了对比分析和讨论 ,阐述了其存在的突出优点。
6)  cross-section bearing capacity
正截面承载力
1.
The calculation method of SRLC beams cross-section bearing capacity is put forward for reference to design the beams.
对劲性轻骨料混凝土梁的正截面承载力进行了试验,并用《钢骨混凝土结构设计规程》(YB9082—97),《型钢混凝土组合结构技术规程》(JGJ138—2001)和ANSYS软件对其进行了计算分析。
2.
In order to further study the mechanical properties of eccentrically-loaded column of square steel tube filled with steel-reinforced concrete,authors used superposition method to deduce the calculation formula of cross-section bearing capacity under yield conditions of both compressional and tensile regions of steel tube and steel-reinforced.
为了进一步研究方钢管-钢骨混凝土偏心受压柱的力学性能,采用叠加法推导了其在钢管、钢骨受拉、受压区屈服条件下的承载力计算公式;分析了长细比、偏心率、套箍率、配骨率等参数对偏压构件承载力的影响;通过算例对偏压柱正截面承载力的计算过程进行了演示。
补充资料:地基极限承载力
      使地基土发生剪切破坏而失去整体稳定时相应的最小基础底面压力。
  
  研究地基极限承载力的目的,在于工程设计中必须限制建筑物基础底面的压力,不仅不容许达到地基极限承载力,而且还必须具备一定的安全度,以保证地基不会发生滑动破坏;同时也使建筑物不致因基础产生过大的变形影响其正常使用。因此,确定地基极限承载力是工程实践中迫切需要解决的问题,也是土力学理论中的重要内容之一。
  
  地基极限承载力与基础下土的剪切破坏密切相关,地基在极限荷载作用下发生剪切破坏的形式有三种:整体剪切破坏、局部剪切破坏和冲剪破坏。①整体剪切破坏(图a)。在土中形成连续的滑动面,土从基础两侧挤出隆起,基础发生急剧下沉或侧倾而破坏。②局部剪切破坏(图b)。介乎整体剪切破坏和冲剪破坏两者之间的一种破坏形式,土中剪切破坏区域始终只发生在基础下的局部范围内,并不形成向外挤出的连续滑动面。③冲剪破坏(图c)。土中并不出现明显的连续滑动面,而是基础下的地基土与周围土之间发生竖向剪切,使基础连续刺入土中而破坏。地基剪切破坏形式的出现与土的性质、基础上施加荷载的情况及基础的埋置深度等多种因素有关。确定地基极限承载力的方法主要有两种:①现场试验方法。在建筑物施工现场进行载荷试验,这实际上是一种基础加载的模拟试验,可以得到地基极限承载力值。载荷试验的优点是能较好地反映实际情况,但荷载板尺寸常较实际基础为小,因此,得到的结果与实际情况仍有差别。此外,也有在现场利用其他原位测试手段,如标准贯入试验、静力触探试验、旁压仪试验,在建立了地区性相关关系后,也可得到地基极限承载力值。②理论计算方法。研究地基极限承载力的计算理论是土力学的重要课题之一。L.普朗特在1920年首先根据极限平衡理论导出了条形基础的极限承载力计算公式。普朗特在推导公式时,假定基础底面与土之间是光滑的、基础下土是无重量的介质,这样得到的滑动面是由两组平面及中间过渡的对数螺旋曲面组成。由于普朗特所做的假定条件与实际不符,故其结果是粗略的。在此以后,不少学者在他的研究基础上作了进一步的修正和发展。40年代K.泰尔扎吉(一译太沙基)根据普朗特的基本理论,提出了考虑基础下土自重的极限承载力公式。50年代G.G.迈耶霍夫提出了适用于深基础的极限承载力公式,他认为土中滑动面可以延伸到基础底面以上的土中,但在求解时还存在着数学上的困难。目前,只能采用简化方法求解。
  
  上述几种极限承载力的计算方法,都假定地基土是不可压缩的刚塑性体,所以只适用于地基是整体剪切破坏情况。若地基比较软弱时,将可能发生局部剪切破坏或冲剪破坏,在这种剪切破坏过程中土体将发生压缩变形,这时若仍用上述方法计算极限承载力将会得到偏大的结果。泰尔扎吉建议对局部剪切破坏情况,可以近似地采用减小土的抗剪强度指标的办法,对原式进行修正。70年代A.S.维西克提出了可以判别地基三种剪切破坏形式的刚度指标,并且还引入了压缩影响系数来考虑局部剪切破坏或冲剪破坏时土的压缩变形影响。因此,维西克所提出的地基极限承载力公式在目前是较为合理的。
  
  
  上述的各种地基极限承载力Pu的计算方法都可以写成如下形式:
  
  
   式中第一项表示基础底面下滑动土体重量的影响,它与基础宽度B及基底以下土的容重γ有关;第二项表示基础两侧超载qa2=γd的影响;第三项表示土的内聚力c的影响。其中 Sγ、Sq、Sc为基础的形状系数;Nγ、Nq、Nc分别为承载力系数,它们是土的内摩擦角嗘的函数,但不同的计算公式具有各自的承载力系数表达式。因此,影响地基极限承载力的因素包括:基础的宽度和埋置深度 (d)、地基土的容重及抗剪强度指标等。
  
  上述公式是根据条形基础的理论建立的。对于条形基础形状系数Sγ、Sq、Sc均为单位值。对于方形、矩形及圆形基础,形状系数应分别采用适当的数值。
  
  在工程实践中应用地基极限承载力的计算公式时,必须综合考虑下述几方面因素:①理论上的严密性及有无实际使用经验;②考虑的因素是否与工程要求相符;③土的均匀性影响及土的抗剪强度指标的选用;④在使用上是否简便。在选用安全系数时,应该考虑到建筑物的类型和重要性、建筑物的容许变形值、建筑地区的地质条件及地基勘探情况、土的抗剪强度试验方法以及不同的计算公式对安全度的要求。
  
  至今确定地基极限承载力的问题尚未得到圆满解决,今后在理论研究方面,特别是对于深基础的极限承载力计算,应考虑到高应力状态下对土的性能的影响,应该采用曲线型的土的抗剪强度破坏包络线和考虑土压缩性的影响。理论研究还要更密切地结合土的实际性能,积累更多的实践观测结果,以提高理论公式的实用性。在现场载荷试验方面,应该考虑荷载板的尺寸效应对试验结果的影响;水下及深层载荷试验的测试技术问题也有待改进。在研究地基极限承载力问题中,理论分析和原位测试应该紧密结合。
  
  

参考书目
   郑大同编:《地基极限承载力计算》,中国建筑工业出版社,北京,1979。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条