说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 有理函数型孤立波解
1)  Solitary wave solution of rational function form
有理函数型孤立波解
2)  solitary wave solutions
孤立波解
1.
Periodic wave solutions and solitary wave solutions to (2+1)-dimensional KdV equation;
(2+1)维KdV方程的周期波解和孤立波解
2.
Exact solitary wave solutions of the coupled K d V equations;
一个耦合KdV方程组的精确孤立波解
3.
New solitary wave solutions for (n+1) dimensional Klein-Gordon-Schrdinger equations;
(n+1)维Klein-Gordon-Schrdinger方程组新的孤立波解
3)  Solitary wave solution
孤立波解
1.
Compacton solution and solitary wave solution for a class of nonlinear intensity Boussinesq equation;
一类非线性强度Boussinesq方程的Compacton解和孤立波解
2.
Exact solitary wave solutions for the Gross-Piteavskii equation with time-dependent linear potential;
含时线性势Gross-Piteavskii方程的孤立波解
3.
The solitary wave solutions with varying velocity for the (3+1)-dimensional variable-coefficients ZK equation;
变系数(3+1)维ZK方程的变速孤立波解
4)  solitary solution
孤立波解
1.
New periodic and solitary solution for the generalized fifth KdV equation;
广义五阶KdV方程的新的周期波解与孤立波解
2.
Envelope periodic and solitary solutions of Davey-Stewartson equation
Davey-Stewartson方程组的包络周期解和孤立波解
3.
The result of reductions gives rise to abundant solutions: Compacton solutions, peakon solutions,kink solutions, and bell-shaped solitary solutions.
在3种规则的要求下得到了广义Camassa-Holm方程的对称性约化,特别研究了C(m,1,1)的对称性约化,约化的结果得到了丰富的解:紧孤立波解(Compacton),尖峰孤立波解(peakon),扭结解和光滑的钟型孤立波解。
5)  soliton solution
孤立波解
1.
For example SK equation,using simple equation and Painleve test,we get many solutions of SK equation,including soliton solutions and some periods solutions.
利用已知精确解的简单方程求解高阶非线性发展方程,以SK方程为例,利用简单方程和Painleve截断展开法,求出该方程的多组行波解,包括孤立波解和类孤立波解,以及若干周期函数解,这种方法还可以用来求解其他高阶非线性发展方程。
2.
Some new elliptic periodic solutions and soliton solution of variable coefficient KdV-MKdV equation with three arbitrary functions by are found Jacobi elliptic function expansion method.
运用Jacobi椭圆函数展开法求得了具有3个任意函数的变系数KdV_MKdV方程的新椭圆周期解及孤立波解。
6)  rational function solution
有理函数解
1.
In this paper,the trial function method based on Cole-Hopf transformation is extended and by using the extended method the new explicit exact solutions for Burgers equation,which include traveling wave solution,solitary wave solutions rational function solution and triangle function solutions are obtained.
对试探函数法进行了一定的扩展,并借此求解出了Burgers方程多个新的显式精确解,其中包括一般形式的行波解、奇异行波解、孤波解、有理函数解和三角函数解。
2.
These solutions contain triangle function solutions,hyperbolic function solutions,rational function solutions,Jacobi elliptic function solutions and so on.
这些解包括三角函数解,双曲函数解,有理函数解,Jacobi椭圆函数解等。
补充资料:有理函数


有理函数
rational Auction

·有理函数[.‘.司加“甫佣;p哪on幼研朋切.目耳职] l)有理函数是函数w=R(z),其中R(z)是公的有理表达式,也就是说,这个表达式是从自变量z和某有限个(实或复)数,通过有限次算术运算得到的.有理函数可以(不唯一地)写成 刀了,、=里(丝州 Q(么)的形式,其中p,Q为多项式,且Q(:)毕0.这些多项式的系数称为有理函数的系数(以冷场汤改由of血拍石。业lfiJ曰=tj on).函数P/Q称为不可约的,如果尸和Q没有公共零点(即,p和Q为互素的多项式).任意有理函数都可写成不可约分式R(:)=尸(习/Q(习;若尸和Q的次数分别为m和n,那么R(:)的次数可以认为是对(。,的或是数 万=max{m,n}· 当n‘O时,(m,n)次有理函数,即多项式(Pol班lo面al),也称为整有理函数(日吐j民花石“阁丘田c-tion).否则,称为分式有理函数(rh犯tional一m石。nalfL川e- tioll).恒为。的有理函数R(劝二O的次数是不定 义的.如果爪n时的点之外,都是有定义的而且还是解析的.注意,当m>n时,R的极点的重数之和等于它的次数N.反之,如果R是一个解析函数,在扩充的复平面上,它仅有的奇点是有限多个极点,那么R必为有理函数. 有理函数经过算术运算(不能用R(z)二0去除)仍得有理函数、因此全体有理函数构成一个域.一般地说,系数在某一域内的有理函数全体构成一个域.若R.(:),RZ(z)为有理函数,则R、(R:(z))仍为有理函数.次数为N的有理函数的p阶导数是次数不超过(p十1)N的有理函数.有理函数的不定积分(或原函数)必为某有理函数与形如c,fog(z一b,)的一些表达式之和.如果有理函数对一切实数x均是实的,那么不定积分丁R(二)dx必能写成一个实系数的有理函数R。(x)与如下形式 e‘.IOglx一b,!,M,log(x,+Pjx+。,), 戈arctg贵粉,‘一‘,…,r;,一1,…,5的表达式以及一任意常数c之和(其中c,,,b,,Pj,马如(2)所示,而M,,戈为实数)·函数R。(x)可用诀lp.,a月a。亩法〔伪切艰功由拓mdhod)求出,这样做可以省去将R(x)分解成部分分式(2)的运算. 为了计算方便,可以用有理函数来逼近已给的函数.已有许多研究涉及多个实变量或多个复变量的有理函数农=尸厂Q,其中P与Q是这些变量的多项式,而Q笋0.此外也有对抽象有理函数 R一二竺已止二A,气 B:。,+一+B月。门的许多研究,这里小,,中2,…是某个紧空间X上的线性无关函数,Al,二,A。,B,,…,B。均为常数·亦见分式线性函数“拍以沁耐~1的比rfo目川on);不,。-Bc翻.函数(Zhul叮vsha function).【补注】有关逼近结果,见h而通近(Pa配apPrD对·叮坦石on).2)代数簇上的有理函数(份tional丘田Ctfo留onan川罗braic珑triety)是有理函数经典概念的一种推广(见第一节).一个不可约代数簇(a唇braicVa余ty)X上的有理函数,是对(U,f)的一个等价类,其中u是X中的非空开子集,而f是U上的正则函数〔哩汕r丘mCtion),两个对(U,f)与(v,g)是等价的,是指在U自v上,f二g.x上有理函数全体构成一个域,记为k(X). 在x二sp戈R是一个不可约仿射簇(副肠朋姐康ty)的情形,X上有理函数构成的域与环R上分式函数构成的域重合.k上k(X)的超越次数称为簇X的维数(d加笠招ionof此姐康勿).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条