|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
1) Alumina Array Template
氧化铝阵列模板
1.
Preparation and Growth Mechanisms of Alumina Array Template;
氧化铝阵列模板制备及机理研究
2) alumina template
氧化铝模板
1.
Effect of heat treatment process on photoluminescence of anodic alumina template;
处理温度对阳极氧化铝模板光致发光性能的影响
2.
The influence of parameters on the pore size of the alumina template;
阳极氧化工艺对氧化铝模板孔径的影响
3.
The absorption border shift to the infrared direction in contrast to the anodic alumina template is due to the increasing of dispersion center.
紫外-可见光吸收光谱测试表明:Cu/Al2O3组装体吸收光谱上仅呈现出一个吸收带边,无等离子共振吸收峰,且吸收边相对于阳极氧化铝模板发生了红移。
3) anodic aluminum oxide template
氧化铝模板
1.
Synthesis of La nano wires by anodic aluminum oxide template in ionic liquids;
在离子液体中用阳极氧化铝模板电沉积制备稀土镧纳米线
2.
Pd-Ni and Pd-Ag alloy nanowires arrays have been fabricated in the nanopores of anodic aluminum oxide template with 200 nm in diameter and 60 μm in depth by galvanostatic electrodeposition.
在孔深60μm直径200 nm的通孔氧化铝模板中,采用恒电流沉积法制备了钯镍与钯银合金纳米线阵列。
4) AAO template
氧化铝模板
1.
In this work, potential_modulation method was used in two_step anodization process to make an AAO template with Y_type nanochannels.
利用两步氧化法,通过对氧化直流电压进行周期性调制可制备出带有Y型孔道的氧化铝模板;然后以金属钴为催化剂,乙炔为碳源,通过CVD法制取得到具有规则Y型分支的碳纳米管阵列。
2.
The AAO template with nano-channels was synthesized and filled with transient metal-oxide NiO by sol-gel method, and their electrochemical properties were primarily studied.
制备具有双通纳米孔道填充过渡金属氧化物NiO的氧化铝模板,初步表征其电化学性质。
3.
Magnetic oxide iron nanowires are obtained by removing AAO template.
通过溶胶-凝胶法在氧化铝模板(AAO)中制备出了磁性Fe_2O_3纳米线阵列,然后去除AAO模板得到磁性Fe_2O_3纳米线。
5) aluminium oxide template
氧化铝模板
6) anodic alumina membrane
氧化铝模板
1.
Preparation and characterization of nickel nanowires by direct electrodeposition in anodic alumina membrane;
基于氧化铝模板直接电沉积法镍纳米线的制备与表征
2.
Highly ordered zinc oxide nanowire/tube arrays were prepared by a sol-gel method in the pores of anodic alumina membranes (AAM).
用溶胶-凝胶法在氧化铝模板中制备了直径约为15、30、50、60nm的有序氧化锌纳米线/管阵列。
3.
Bi/Sb and Ag/Bi/Ag segmented nanowire heterojuction arrays were fabricated by the step pulsed electrodeposition in anodic alumina membranes and characterized by FESEM, XRD and TEM.
采用分步脉冲电沉积技术,在氧化铝模板中制备了Sb/Bi和Ag/Bi/Ag纳米线异质结阵列,对其进行了结构表征,研究了这些纳米线异质结阵列的电输运特性。
补充资料:Esa相阵控雷达/相位阵列雷达
aesa〈active electronically-scanned array〉主动电子扫描相控阵列雷达是21世纪主流的军事雷达,全世界第一种实用化aesa相控阵列雷达是an/spy-1神盾舰雷达系统, an/spy-1系统拥有强大远距侦蒐与快速射控能力,他是专为美军新一代神盾舰载作战系统发展而来的“平板雷达”。 aesa主动电子扫瞄相控阵列雷达,就是一般所称的「相列雷达 / 相阵控雷达」,美军神盾舰系统就是由aesa+c4指挥、管制〈武器〉、通讯、计算机等整合而成的高效能『海上武器载台』。 aesa相阵控雷达最初由美国无线电公司(rca)研发制造出来,后来该公司由于经营不善,被通用航天公司(ge aerospace)购并成为其集团下之雷达电子部门,但往后ge aerospace又将该部门卖给 洛克希得.马丁公司(lockheed martin) (美国最大的军火供应商),因此spy-1相控阵列雷达现在是“洛马”的专利技术,如今aesa相控阵列雷达在“洛马”公司的后续改进上,已开发出战机、飞弹、防空等专用的缩小化aesa相控阵列雷达,甚至外销提供全球各神盾舰、各式防空飞弹所需要的雷达〈神盾系统是美国雷神公司的产品〉。在一般人的印象中,旧式雷达就是一个架在旋转基座上的抛物面天线,不停地转动著以搜索四面八方;而an/spy-1相位阵列雷达的天线从外观上看,却只是固定在上层结构或桅杆结构表面的大板子。 旧式传统的旋转天线雷达必须靠著旋转才能涵盖所有方位,要持续追踪同一个目标时,要等天线完成一个360度旋转周期回到原先位置时才能作目标资料的更新,等到获得足够的资料时,敌方飞弹早已经兵临城下,拦截时间所剩无几,这种力不从心的情况在面对各式新一代高速先进超音速反舰飞弹时,pla舰队损失会更加惨重;而如果飞弹或战机进行高机动闪避,由机械带动来改变方位的旧式雷达天线很可能会跟不上目标方位变化,难以有效追踪进而被偷袭成功。传统雷达的雷达波都有一个受限制的波束角,因此雷达波会形成一个扇形查找断层网,距离越远则雷达波对应的弧长越大,换言之,单位面积对应到的能量也随距离拉长而越来越低(雷达波强度随距离的平方成反比),分辨率与反应度自然无法令人满意;加上旧式长程雷达都会使用较长的波长以传递较长的距离,而波长越长分辨率就越低,更使这个问题恶化。例如;传统雷达在搜索第二代掠海反舰飞弹这类低体积讯号的目标时,传统长程搜索雷达即便在目标进入搜索范围后,通常还是得旋转几圈后,才能累积足够的回波讯号来确认目标。为了弥补这个弱点,这类长程搜索雷达只好将雷达旋转速度降低(往往需要十秒钟以上才能回转一圈),让天线在同一个位置上停留更久,以接收更多各方位的脉冲讯号,然而这样又会使目标更新速率恶化。至于用来描绘目标轨迹的追踪雷达〈照明雷达〉则拥有较快的天线转速(例如每秒转一周)以及较短的波长,尽量缩短目标更新时间,但也使得天线较难持续接收同一目标传回的讯号,侦测距离大幅缩短。因此,长距离侦测以及精确追踪对传统旋转雷达而言,是鱼与熊掌不可兼得的。 aesa相位阵列雷达简介 相位阵列雷达的固定式平板天在线装有上千个小型天线单元(又称移相器,phase shifter),每个天线都可控制雷达波的相位(发射的先后),各天线单元发射的电磁波以干涉阵列原理合成接近笔直的雷达波束,旁波瓣与波束角都远比传统雷达小,主波瓣则由于建设性干涉而得以强化,故分辨率大为提升;至于波束方位的控制则是依照“海更士”波前原理,透过移向器之间的相位差来完成。由于移相器的电磁波“相位”改变系由电子“阵列”控制方式进行,相位阵列雷达可在微秒内完成波束指向的改变,因此在极短的时间内就能将天线对应到的搜索空域扫瞄完毕,故能提供极高的目标更新速率。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|