说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Jacobi谱方法
1)  Jacobi spectral methods
Jacobi谱方法
1.
In this dissertation, the theory of the Jacobi spectral methods and their applications to singular problems, unbounded domains and axisymmetric domains are studied.
本文将利用Jacobi多项式或以Jacobi多项式零点为节点的插值基函数来逼近奇异解,并建立有关的新的带权函数空间投影理论、Jacobi-Gauss型求积和Jacobi插值逼近理论,这些构成了Jacobi谱方法和拟谱方法(包括一维和多维)的理论基础。
2)  Jacobi pseudospectral method
Jacobi拟谱方法
1.
A Jacobi pseudospectral method is proposed for the nonlinear Klein -Gordon (NLKG) equation on the half line with rough asymptotic behaviors at infinity.
然后利用Jacobi拟谱方法来求解。
3)  Spectral Jacobi-Galerkin method
谱Jacobi-Galerkin方法
4)  Pseudo-Spectral Jacobi-Galerkin method
伪谱Jacobi-Galerkin方法
5)  Jacobi rational spectral method
Jacobi有理谱方法
1.
A modified Jacobi rational spectral method on the half line
半直线上修正的Jacobi有理谱方法(英文)
6)  mixed Jacobi-spherical harmonic spectral method
混合Jacobi-球面调和谱方法
补充资料:谱方法
      解偏微分方程的一种数值方法。其要点是把解近似地展开成学滑函数(一般是正交多项式)的有限级数展开式,即所谓解的近似谱展开式,再根据此展开式和原方程,求出展开式系数的方程组。对于非定常问题,方程组还同时间t有关。谱方法实质上是标准的分离变量技术的一种推广。一般多取切比雪夫多项式和勒让德多项式作为近似展开式的基函数。对于周期性边界条件,用傅里叶级数和面调和级数比较方便。谱方法的精度,直接取决于级数展开式的项数。现以解简单一维热传导方程的初边值混合问题为例,说明这种方法的应用:
  
   
  
  (1)
  
  边界条件
   u(0,t)=u(π,t)=0,
   (2)
  
  初始条件
   u(x,0)=g(x),
  
  (3)式中x为坐标;t为时间;a为大于零的常数。根据周期性边界条件,可取近似谱展开式为:
  
  
   
  
  
    (4)把式(4)代入式(1)得:
  
  
   
  
   (5)
  
  
   。
  
  
  (6)
  
  利用快速傅里叶变换技术,可迅速完成求解过程,而且(4)至(6)式比任何有限阶的有限差分解,都更快地收敛到(1)至(3)的真解。一般说,谱方法远比普通一、二阶差分法准确。由于快速傅里叶变换之类的技术不断发展,谱方法的运算量越来越少,一般是很合算的。特别是对于二维以上的问题,用差分法计算必须设置足够多的网格点,造成计算量的增加,而用谱方法一般不需取太多的项就可得到较高精度的解。因此谱方法在计算流体力学复杂流场的问题中有广泛应用。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条