1) symplectic eigenfunction expansion
辛本征函数展开
2) eigenfunction expansions
本征函数展开式
1.
The eigenfunction expansions of the second electric dyadic Green s functions for a coaxial cavity can be derived based on the method of Gm, whereby the irrotational vector wave function L is not needed.
基于场的矢量波函数展开理论,采用Gm方法构造并矢格林函数的本征函数展开式时,无需用到无旋矢量波函数L,能够简化推导过程。
3) Method of expansion in terms of eigenfunctions
本征函数展开法
4) eigensolution expansion method
特征函数展开法
1.
Secondly, the method of separation of variables and the eigensolution expansion method are used to obtain the analytical solutions of thick plates under corresponding boundary conditions.
然后,采用分离变量法和特征函数展开法在相应的边界条件下求出级数解。
5) eigenfunction expansion
特征函数展开
6) Eigenmode expansion
本征展开
补充资料:本征函数和本征值
算符弲作用于函数f(r)上, 得出另一个函数。若算符弲作用于一些特定的函数Ui(r)上(i=1,2,...)结果等于一常量乘同一函数,即,
则常数Fi称为算符弲的本征值,ui(V)称为属于这个本征值的本征函数。上式称为算符弲的本征值方程。
在量子力学中,一个力学量所可能取的数值,就是它的算符的全部本征值。本征函数所描写的状态称为这个算符的本征态。在自己的本征态中,这个力学量取确定值,即这个本征态所属的本征值。
则常数Fi称为算符弲的本征值,ui(V)称为属于这个本征值的本征函数。上式称为算符弲的本征值方程。
在量子力学中,一个力学量所可能取的数值,就是它的算符的全部本征值。本征函数所描写的状态称为这个算符的本征态。在自己的本征态中,这个力学量取确定值,即这个本征态所属的本征值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条