1) intrinsic mode function
本征模函数
1.
The complicated original data set is decomposed into a series of intrinsic mode functions(IMF)and a residue by the empirical mode decomposition(EMD).
此方法是通过经验模态分解(EMD)将一复杂的原始数据序列分解成一组本征模函数(IMF)和一个残余项,然后再对每一个IMF进行Hil bert变换。
2) Intrinsic Mode Function(IMF)
本征模函数
1.
A Canny operator edge detection algorithm based on Bidimensional Empirical Mode Decomposition(BEMD) is proposed, which divides the images into Intrinsic Mode Function(IMF) by using BEMD.
提出一种基于二维经验模态分解(BEMD)的Canny算子边缘检测算法,通过BEMD将图像分解成多层本征模函数,利用Canny算子对各分量进行边缘检测,并有选择地逐层重构出图像边缘,在灰度图像集中进行测试。
2.
Then,the outer-race faults signal was decomposed by the EMD,the first intrinsic mode function(IMF) was analyzed by cepstrum spectrum and extracted the fault feature effectively.
该方法首先对外圈故障信号作传统的傅里叶幅值谱和幅值倒频谱分析,未能明显地找到故障特征;然后对故障信号做经验模态分解,并对分解出来的第一层本征模函数作倒频谱分析,有效地提取出了故障特征;最后,用该方法分别对具有内圈故障和滚动体故障的轴承故障信号作分析,也有效地提取出了故障特征。
3) intrinsic mode function
本征模态函数
1.
EMD is applicable and self-adaptive to nonlinear and non-stationary signal processing,which can decompose the acoustic signals into several IMFs(intrinsic mode function).
利用EMD处理非稳态、非线性信号具有良好的自适应性的特点,将声信号分解为多个本征模态函数(Intrinsic Mode Function,IMF),然后对相应的IMF进行互相关获得多尺度时延值。
4) intrinsic mode function(IMF)
本征模函数(IMF)
6) Intrinsic mode functions
本征模态函数
补充资料:模函数
定义在单位圆(或上半平面)内部且以其周界为自然边界的某种特殊解析函数。解析函数的许多经典理论如整函数理论中的皮卡定理、正规族理论中的一些判定定理,都可借助模函数的性质来证明。
如图1,在z平面中取单位圆│z│<1,在其周界上按反时针向依次任取三点A,B,C,并作一圆弧三角形ABC,其每边均与│z│=1正交,构成一区域D0(图中斜线区)。在w平面中实轴上取定三点α(=0),β(=1),γ(=∞)。由共形映射的黎曼定理,存在一单叶解析函数w =??(z),把D0映到w 的上半平面,并使A,B,C分别映到α,β,у。根据对称性原理,w =??(z)可解析开拓到圆弧三角形Dó中,这里Dó是D0关于AB 弧的对称反演区域(C点反演成圆周│z│=1上另一点C┡),而函数值则取在w 的下半平面,此下半平面与原上半平面沿线段αβ相粘连。同理,w=??(z)又可分别解析开拓到D0的关于CA弧和BC弧的对称圆弧三角形中,其函数值也在w 的下半平面中,它们分别与上半平面沿半直线 γα 和 βγ 相粘连。这样,得到了│z│<1中的一圆弧六边形区域,w =??(z)在其中解析,取值于整个w 平面中如上粘连的一个上半平面和三个下半平面。再以此六边形的各边进行反演,则w=??(z) 又可再次解析开拓到|z|< 1中边数更多的圆弧形区域中(仍在|z|<1内),取值又回到w 的上半平面,并与上面已取得的下半平面分别沿αβ,βу,уα之一相粘连。如此无限继续下去,则w =??(z)就开拓成为整个│z│< 1内的解析函数,其所取之值在w平面上形成一无限层的黎曼曲面。w =??(z)称为模函数。其反函数z=φ(w)是整个w平面除0,1,∞外的多值解析函数,或者可说成是上述黎曼曲面上的单值解析函数。
模函数w =??(z)单值解析于|z|<1内,显然不取值0,1,∞,且当z从单位圆内部以任意方式趋于其周界上一点时,不可能有确定的极限值,因此|z|=1是其自然边界,即它不可能再向|z|=1之外进行解析开拓。
也可用一分式线性变换t=ω(z),|z|<1,把z变到t平面的上半平面,使A,B,C 分别变成实轴的α,b以及с=∞,而D0变成区域墹 0(图2),当D0关于其一边界圆弧作对称反演时,相应地墹 0也关于其相应边作对称反演。
设t=ω(z)的反函数为z=λ(t),则
w =??(z)=??(λ(t))=φ(t)就把t的上半平面映成w平面的上述黎曼曲面。φ(t)也称为模函数,其性质本质上与??(z)相类似。
如果把构成模函数w=??(z)过程中所作的种种关于圆弧的反演变换记为T1,T2,...,则对于任何Tj,??(z)与??(Tjz)互为共轭。因此,对任何两个Tj,Tk,恒有??(z)=??(TjTkz),即当z经过两次这类反演后,其函数值??(z)不变。如果把偶数个这种反演及其逆作为元素,它们生成一变换群G,则当z经G任一元变换后,函数值??(z)不变。称G为模函数w=??(z)的不变群,也称??(z)为关于群G 的自守函数(见椭圆函数)。
如图1,在z平面中取单位圆│z│<1,在其周界上按反时针向依次任取三点A,B,C,并作一圆弧三角形ABC,其每边均与│z│=1正交,构成一区域D0(图中斜线区)。在w平面中实轴上取定三点α(=0),β(=1),γ(=∞)。由共形映射的黎曼定理,存在一单叶解析函数w =??(z),把D0映到w 的上半平面,并使A,B,C分别映到α,β,у。根据对称性原理,w =??(z)可解析开拓到圆弧三角形Dó中,这里Dó是D0关于AB 弧的对称反演区域(C点反演成圆周│z│=1上另一点C┡),而函数值则取在w 的下半平面,此下半平面与原上半平面沿线段αβ相粘连。同理,w=??(z)又可分别解析开拓到D0的关于CA弧和BC弧的对称圆弧三角形中,其函数值也在w 的下半平面中,它们分别与上半平面沿半直线 γα 和 βγ 相粘连。这样,得到了│z│<1中的一圆弧六边形区域,w =??(z)在其中解析,取值于整个w 平面中如上粘连的一个上半平面和三个下半平面。再以此六边形的各边进行反演,则w=??(z) 又可再次解析开拓到|z|< 1中边数更多的圆弧形区域中(仍在|z|<1内),取值又回到w 的上半平面,并与上面已取得的下半平面分别沿αβ,βу,уα之一相粘连。如此无限继续下去,则w =??(z)就开拓成为整个│z│< 1内的解析函数,其所取之值在w平面上形成一无限层的黎曼曲面。w =??(z)称为模函数。其反函数z=φ(w)是整个w平面除0,1,∞外的多值解析函数,或者可说成是上述黎曼曲面上的单值解析函数。
模函数w =??(z)单值解析于|z|<1内,显然不取值0,1,∞,且当z从单位圆内部以任意方式趋于其周界上一点时,不可能有确定的极限值,因此|z|=1是其自然边界,即它不可能再向|z|=1之外进行解析开拓。
也可用一分式线性变换t=ω(z),|z|<1,把z变到t平面的上半平面,使A,B,C 分别变成实轴的α,b以及с=∞,而D0变成区域墹 0(图2),当D0关于其一边界圆弧作对称反演时,相应地墹 0也关于其相应边作对称反演。
设t=ω(z)的反函数为z=λ(t),则
w =??(z)=??(λ(t))=φ(t)就把t的上半平面映成w平面的上述黎曼曲面。φ(t)也称为模函数,其性质本质上与??(z)相类似。
如果把构成模函数w=??(z)过程中所作的种种关于圆弧的反演变换记为T1,T2,...,则对于任何Tj,??(z)与??(Tjz)互为共轭。因此,对任何两个Tj,Tk,恒有??(z)=??(TjTkz),即当z经过两次这类反演后,其函数值??(z)不变。如果把偶数个这种反演及其逆作为元素,它们生成一变换群G,则当z经G任一元变换后,函数值??(z)不变。称G为模函数w=??(z)的不变群,也称??(z)为关于群G 的自守函数(见椭圆函数)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条