1) Bezier-type operators
Bezier型算子
2) Lupas-Bezier operators
Lupas-Bezier型算子
1.
Point-wise approximation of Lupas-Bezier operators for locally bounded functions;
Lupas-Bezier型算子列对局部有界函数的点态逼近估计
3) Sikkema-Bezier type operator
Sikkema-Bezier算子
4) Bernstein-Bezier-Kantorovich operators
Bernstein-Bezier-Kantorovich算子
1.
The rate of approximation of Bernstein-Bezier-Kantorovich operators L~((α))_n for bounded functions is studied and an estimate formula on the rate of convergence of this type approximation is given.
文章研究了Bernstein-Bezier-Kantorovich算子列关于一般有界函数的逼近阶估计,得到一个其收敛阶的精确估计公式。
5) Bezier surface modeling
Bezier曲面造型
6) a series of Bezier random function
随机Bezier型函数列
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条