说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 块SOR迭代算法
1)  Block SOR iteration method
块SOR迭代算法
2)  Block SOR-Newton Iterative Method
块SOR-Newton迭代法
1.
The main content is to use the iterative method to solve the minimization problem of nonlinear function, combining Block Jacobin-Newton Iterative Method and Block SOR-Newton Iterative Method which originated from Jacobin-Newton Iterative Method and SOR-Newton Iterative Method respectively.
本文研究了求解约束及其无约束极值问题的迭代方法,研究的主要内容是结合Jacobi-Newton迭代法和SOR-Newton迭代法这两类迭代法所构成的块Jacobi-Newton迭代法和块SOR-Newton迭代法等求解非线性函数的极小化问题的迭代方法,主要由三部分组成: 第一部分简要回顾了以线性函数的迭代法为基本迭代法,以Newton迭代法为辅助迭代法的Jacobi-Newton迭代法,在此基础上求解了无约束最优化极值问题。
3)  SOR iterative method
SOR迭代法
1.
The present paper discusses the convergence of SOR iterative method for solving the linear system when the ratio matrix is a nonsingular square matrix and puts forward some principles to judge the convergence of SOR iterative method.
本文在系数矩阵为非奇方矩阵时,讨论了求解线性方程组的SOR迭代法的收敛性。
4)  SOR iterative method
SOR迭代方法
1.
In this paper, a numerical algorithm determining the optimal relaxation factor of SOR iterative method is constructed by using the simple direct search strategy in the optimization theory.
SOR迭代方法中的最佳松弛因子的确定 ,是数值代数中的一个理论难题。
5)  SOR iterative matrix
SOR法的迭代矩阵
6)  block iterative methods
块迭代算法
补充资料:迭代算法


迭代算法
iteration algorithm

  迭代算法〔i恤腼吨函d朋;HTep叫“ouH‘~p“仪] 由点到集合的一个映射序列A*所确定的递推算法,其中A*:V一V,V是一个拓扑空间,对于某初始点““任v,可依下式计算点列。“任V, 。“+,一注*。“,儿=o,l,·…(l)称算子(1)为迭代(i把mt沁n),而序列{。“}为迭代序列(itemti祀s叫uence). 迭代法(jtemtionn犯thod)(或迭代逼近法(me-thod of iterati记appro汕na石on”应用于求下面算子方程的解 通。”f,(2)即某泛函的极小值,求方程Au=又“的本征值和本征向量等,同时也用来证明这些问题解的存在性.如果对于一个初始近似。。,当k一的时:‘~。,则称迭代方法(l)收敛到问题的解u. 求解(2)的线性度量空间V上的算子A*一般由下式构造 注*况几=。七一H*(A。友一f),(3)其中{H*二V~V}是由某迭代型方法所确定的算子序列.压缩映射原理(c ontraCting .n分pp吨pnn-ciPle)及真摧户,’或著向题的泛函变分极小化方法都是建立在构造形如(l),(3)的迭代法基础之上.所使用的构造A七的各种方法有Newton法(Newton脸thod)或下降法(d留cent,n祀th(记of)的诸多变形.人们尝试选取H*使得在一定条件下。止~u的快速收敛得到保证,这些条件要求计算机存储空间确定后算子A*u六的数值实现充分简单,有尽可能低的复杂性而且数值稳定.求解线性问题的迭代法得到了很好的发展和深人的研究.该迭代法这里分为线性与非线性两大类.Ga.法(Ga璐nr目兀心),Sd翻法(Sei-delrr℃th司),逐次超松弛法(见松弛法(侧公爪沁n1优thod))和带有tle氏皿eB参数的迭代法属于线性方法;变分法(如最速下降法,共扼梯度法和极小偏差法(mi曲nal discrepancyn坦thod))等.见最速下降法(s吹p巴t把ceni,皿thi对of);共扼梯度法(eonju,te脚dients,此山记of)属于非线性方法.最有效的迭代法之一是使用tIe玩IIDeB参数(Che勿shevP~t-ers),这里A是一个带有〔。,M』上谱的自相伴算子,M>m>0.这个方法提供了关于预先指定的第n步收敛性最优(对谱边界上的给定信息)估计.方法可描述为 “‘+’=“一“*十1(通。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条