说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 几何微分属性
1)  geometrical differential property
几何微分属性
2)  nonlinear differential geometry theory
非线性微分几何
1.
According to the nonlinear differential geometry theory,a fixed-frequency-PWM sliding-mode variable-structure control based on precise feedback linearization is proposed for DC-DC switching converter.
基于非线性微分几何理论,提出了一种基于精确反馈线性化的定频PWM滑模变结构控制策略。
3)  geometric attribute
几何属性
1.
From two different points of view,this paper presents two different demonstrations about the geometric attributes of cone curve when θ>α,and discusses it s characters .
本文从两种不同的角度出发, 对θ>a时的圆锥曲线几何属性给出了两种不同的证明方法并对其特点进行了比较。
4)  Differential geometry
微分几何
1.
PMSM control based on state variable feedback and differential geometry theory;
基于状态反馈与微分几何的PMSM控制
2.
Research on chaotic synchronization based on differential geometry theory;
基于微分几何理论的混沌同步研究
3.
Controlling chaos in permanent magnet synchronousmotor based on the differential geometry method;
基于微分几何方法的永磁同步电动机的混沌运动的控制
5)  non-geometrical attribution
非几何属性
1.
With the rich operation semantics of Collaborative Graphics Editing Systems,this paper proposes a new conflict model and a modified definition on the basis of the identification of the geometrical/non-geometrical attribution of the object.
基于协同图形操作的丰富语意,在识别出对象几何属性与非几何属性操作的基础上,提出一个新的冲突模型及定义,它能更好地实现操作意愿维护,并已在原型系统CoDraftPaint的Undo算法中得到验证。
6)  differential geometry
微分几何法
1.
With the combination of differential geometry and variable structure control,a new nonlinear control algorithm is proposed,in which the nonlinear feedback of the system is linearized through differential geometry and the control strategy is designed with mature sliding mode variable structure contro.
为此,将微分几何与变结构控制相结合,提出了一种新型的非线性控制算法,即通过微分几何法将系统非线性反馈线性化,再用成熟的滑模变结构控制理论设计控制策略。
补充资料:Nash定理(微分几何学中的)


Nash定理(微分几何学中的)
ial geometry) Nash theorems (in differen-

N目l定理(微分几何学中的)〔N山由由印泊1拐(in山筋改价回g印艘甸);比二a TeopeM“1 R记叮ul扣流形在E侧土d空间中等距嵌人(如饮沮-d云19)和等距浸人(一ion)的两组定理(亦见流形的浸入(肛田犯邝ion of a Inanifokl);等距浸入(isonletric~ion)).最初的叙述是J.Nash给出的(〔l」). l)关于Cl嵌人和Cl浸人的Nash定理.具有C”类度量g的n维R~空间(R吮nannjan印ace)砂在m维EuCljd空间E门中的Cl类浸入(嵌人)f:俨~E“称为短的(sllort),如果它在俨上诱导的度量g,使得二次型g一外是正定的·若砂有在E附(m)n+l)中的短浸人(嵌人),则尸也有在Em中的C,类等距浸人(嵌人).在m)”+2的限制下,该定理在【l]中被证明,如上所述形式的定理由【2]证明.特别是,这个定理蕴含着:若紧R犯犷naon流形俨有在E“(m)n十l)中的C,嵌人(浸人),则俨也有在E们中的等距c]嵌人(浸人).N出h定理的另一个结论是:Vn的每一个点有一个充分小的邻域,它容许有在En十‘中的Cl类等距嵌人. 2)关于正则嵌人的N出h定理.每一个紧c尸类Rlerr以nn流形(3簇r提二)有在E“中的等距Cr类嵌入,其中m=(3矛+11n)/2若砂不是紧的,则它有在E们’中的等距cr类嵌人,此处阴1=(3记+1 In)(n+l)/2. 关于正则嵌人的N留h定理来自关于很广的一类微分算子的逆算子的N比h隐函数定理(N出h加P五cit一腼·面nth印况m)的一个应用.该定理的意思是,当自然地联系于微分算子L的某个线性代数方程组可解时,且在象和逆象中引进合适的拓扑,则所讨论的算子是开映射,即L在其范围内任意一点附近是局部可逆的.对于Ri已比口nn流形在Eu山d空间中嵌人的方程,它归结为:映射f:V”~E爪关于V”的内在坐标的一阶导数和二阶导数必须是线性无关的.这样的嵌人首先是在〔41中考虑的‘它们被称为亨申的〔脉).N出h隐函数定理意味着与自由嵌人在Em中的R止Ir以nn流形户充分接近的紧凡e皿nn流形V”也有在E,中的自由嵌人.这个事实以及关于一个参数的初始延拓方法导至关于正则嵌人的N由h定理(见「3】).将Nasb方法推广到非紧流形和解析嵌人,并且将关于一个参数的延拓过程作重要的加细,已经证明每一个无限次可微(解析)的R正n坦口n流形砂有在E爪中等距的可微(解析)嵌入,其中m=。(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条