说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> FCB-优化映象
1)  FCB-majorized mapping
FCB-优化映象
1.
FCB-mappings and FCB-majorized mappings from topological space into FC-space are introduced and studied.
引入并研究了两类新的从拓扑空间到FC-空间的集值映象即FCB-映象和FCB-优化映象,并利用连续单位分解定理和不动点理论,在FC-空间上证明了几个有关集值映象的极大元存在性定理,推广了某些相应的结论。
2)  FC_B-majorized mappings
FCB优化映象
1.
In this paper,by using the better admissible class B(Y,X) and L_s-majorized mappings,FC_B-majorized mappings were introduced in FC-spaces and several existence theorems of maximal elements for FC_B-majorized mappings were proved.
结合最佳容许映象类B(Y,X)以及LS优化映象,在FC空间中引入了FCB优化映象,并给出了其极大元的存在定理。
3)  the family of FCB-majorized mappings
FCB-优化映象组
1.
Applying the existence theorems of the maximal elements for the FCB-mappings and FCB-majorized mappings in FC-spaces,several new existence theorems of the maximal elements for the family of FCB-mappings and the family of FCB-majorized mappings with better admissibility are established and proved in product FC-spaces.
利用FC-空间中的有关FCB-映象和FCB-优化映象的极大元存在性定理,在乘积FC-空间中建立和证明了几个有较好容许性质的FCB-映象组和FCB-优化映象组的极大元存在性定理。
4)  FCB-mapping
FCB-映象
1.
FCB-mappings and FCB-majorized mappings from topological space into FC-space are introduced and studied.
引入并研究了两类新的从拓扑空间到FC-空间的集值映象即FCB-映象和FCB-优化映象,并利用连续单位分解定理和不动点理论,在FC-空间上证明了几个有关集值映象的极大元存在性定理,推广了某些相应的结论。
5)  the family of FCB-mappings
FCB-映象组
1.
Applying the existence theorems of the maximal elements for the FCB-mappings and FCB-majorized mappings in FC-spaces,several new existence theorems of the maximal elements for the family of FCB-mappings and the family of FCB-majorized mappings with better admissibility are established and proved in product FC-spaces.
利用FC-空间中的有关FCB-映象和FCB-优化映象的极大元存在性定理,在乘积FC-空间中建立和证明了几个有较好容许性质的FCB-映象组和FCB-优化映象组的极大元存在性定理。
6)  Gθ-majorized mapping
Gθ-优化映象
1.
New classes of Gθ -correspondences and Gθ -majorized mappings without open lower sections are introduced in G -convex spaces.
给出了不具有开原象的Gθ-对应和Gθ-优化映象的概念;在非仿紧的G-凸空间中证明了关于Gθ-对应和Gθ-优化映象的极大元存在定理。
补充资料:象为
1.谓作为征象而显现。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条