1) Thrice splint function fitting
三次样条函数拟合
2) cubic B spline approximation
三次B样条函数拟合
1.
It presents the linear least square approximation,cubic B spline approximations and programming algorithms.
针对目前公路工程土工试验数据处理方法的不足,利用数据拟合原理和计算机可视化编程技术,对公路边坡病害研究中的土工试验数据进行分析,给出了多项式线性最小二乘拟合和三次B样条函数拟合两种方法及计算机实现算法。
3) Trinary Three Spline Function
三三次样条函数
4) cubic spline nonparametric fitting
三次样条非参数拟合
5) Cubic Spline Function
三次样条函数
1.
Fast calculation of interpolated FFT algorithm using cubic spline function;
应用三次样条函数快速计算插值FFT算法
2.
The processing of cubic spline function of extreme point with infinite derivate;
端点具有无穷大导数的三次样条函数的处理
3.
Analysis of the distribution effects of fitting nodes based on the cubic spline function;
基于三次样条函数的采样点分布方法研究
6) cubic spline functions
三次样条函数
1.
The isothermal transformation diagrams of supercooled austenite are described by cubic spline functions.
本文用三次样条函数描述了钢的过冷奥氏体等温转变曲线,在微机上建立了TTT曲线数据库,实现了TTT曲线的数据形式存储与动态调用,操作简单、直观,占用计算机存储空间小。
补充资料:样条函数
样条函数 spline function 一类分段(片)光滑、并且在各段交接处也有一定光滑性的函数。简称样条。样条一词来源于工程绘图人员为了将一些指定点连接成一条光顺曲线所使用的工具,即富有弹性的细木条或薄钢条。由这样的样条形成的曲线在连接点处具有连续的坡度与曲率。分段低次多项式、在分段处具有一定光滑性的函数插值就是模拟以上原理发展起来的,它克服了高次多项式插值可能出现的振荡现象,具有较好的数值稳定性和收敛性,由这种插值过程产生的函数就是多项式样条函数。样条函数的研究始于20世纪中叶,到了60年代它与计算机辅助设计相结合,在外形设计方面得到成功的应用。样条理论已成为函数逼近的有力工具。它的应用范围也在不断扩大,不仅在数据处理、数值微分、数值积分、微分方程和积分方程数值解等数学领域有广泛的应用,而且与最优控制、变分问题、统计学、计算几何与泛函分析等学科均有密切的联系。
|
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条