说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 前向网络模型
1)  Forward-type network model
前向网络模型
2)  Forward neural network
前向型神经网络
1.
The Application of Forward Neural Network Based on Data Mining for the Time Serial Prediction of Traffic Flow;
基于数据挖掘的前向型神经网络在交通流时序预测中的应用
3)  feed forward network model
前馈网络模型
4)  feedforward network
前向网络
1.
Two hybrid learning strategies of feedforward network;
前向网络的两种混合学习策略
2.
This paper explains,how to design and simulate a three-layer feedforward network with the function simulation provided by a neural network toolbox of MATLAB.
本文用MAT LAB中神经网络工具箱 (NeuralNetworkToolbox)提供的函数仿真设计一个三层前向网络。
5)  feedforward neural network
前向网络
1.
In this paper, a systematic analysis is made on the global optimization of multilayer feedforward neural network, some fundamental conditions which need be met by any algorithm of global optimization are presented, a practicable algorithm of global optimization is suggested and reasonableness and validity of the present algorithm is explained.
本文对多层前向网络的全局最优化问题进行了系统的分析,给出了全局最优化算法应具备的基本条件和一种算法格式,对这种算法格式的合理性进行了论证,对该领域未来的研究热点作了说
6)  network-oriented type
网络导向型模式
1.
Advice on the choice of governance type of the private enterprise is given on the basis of comparing the respective advantage and disadvantage of market-oriented type and network-oriented type.
本文从民营企业内部治理结构分析了产生这种现象的原因,在比较市场导向型模式和网络导向型模式各自利弊的基础上,给民营企业治理模式的选择提供了建议。
补充资料:Hopfield神经网络模型


Hopfield神经网络模型
Hopfield neural network model

  收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条