1) integration with an ordered product of operators technique
有序算符乘积内的积分技术
2) technique of intergration within an ordered product of operators
有序算符内的积分技术
1.
For one-dimensional damping harmonic oscillator,using the technique of intergration within an ordered product of operators,the time-evolution state of this timedependent system is derived,which turns out to be a squeezed state.
用有序算符内的积分技术,求解一维量子阻尼振子的时间演化态。
3) the technique of integration within an ordered product (IWOP) of operators
有序算符内的积分(IWOP)理论
4) integration over operators
算符的积分
5) ordering product
有序乘积
1.
The various transformations between the ordering products of exponential quadratic operator and its inverse,between the normal and anti normal products of exponential quadratic operator can be relized by discussing three conclusions for the exponential quadratic operator of multi mode boson system.
讨论了有关多模玻色系统指数二次型算子的三条结论,据此,可以方便地实现该类算子的有序乘积同其逆算子的有序乘积之间,以及该类算子的正、反正规乘积形式之间相互转换。
6) arithmetic product
算术乘积
补充资料:Γ算符
分子式:
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条