1) reverse U relation
倒U关系
1.
The article explains the reverse U model s forming and evolution character with the key concepts of the directive technological innovation and in-directive technological innovation,through linear separation on the reverse U relation between firm size and technological innovation,it explains the disputaion between the Schumpeter s hypothesis and reverse U relation in the same analysis frame.
本文以定向性技术创新和非定向性技术创新为核心概念,通过对企业规模与技术创新的倒U关系进行线性分拆,将"熊彼特假设"和倒U关系的争议在同一个分析框架内进行解说。
2) Inverted U-shaped Relation
倒U型关系
3) Inverted-U Relation
倒U形关系
1.
Impacts of FDI Inflow on Wage Gap in China:Emergence and Weakening of an Inverted-U Relation and Explanation
FDI流入对我国工资差距的影响——一个倒U形关系的形成、弱化及其解释
4) inverted U
倒U
1.
Through an analysis of China s overall household income disparity between town and country and the variation trends in household income disparity between town and country in different regions since 1985, the author concludes that although China s overall household disparity between town and country is in conformity with the law of"inverted U", it contains many irrational elements.
通过对1985年以来我国的总体城乡居民收入差别以及不同地区城乡居民收入差别变动趋势的分析,笔者认为我国的总体城乡居民收入差别虽然符合"倒U"规律,但包含了很多的不合理成分;各地区的城乡居民收入差别主要取决于经济发展水平,而农业与非农业之间比较劳动生产率的差异、农村劳动力的转移状况等是导致城乡居民收入差别扩大的重要因素。
5) reciprocal e-quation
倒易关系
6) reverse relation
倒退关系
补充资料:昂萨格倒易关系
描述不可逆热力学过程的线性唯象定律中各系数间的倒易关系。它是粒子微观运动方程的时间反演不变性在宏观尺度上的反映。这个关系是1931年由L.昂萨格建立,后经H.B.G.卡西米尔发展,扩充了它的适用范围。
人们常用"流"和"力"来说明不可逆过程。在扩散过程中的物质流密度,热传导中的热流密度,化学反应中的反应速度等都称为流,用Ji(i=1,2,...,n)表示。引起流的相应力为浓度梯度、温度梯度、化学亲合力等用Xi(i=1,2,...,n)表示。在线性区它们的关系唯象地写为
唯象系数Lij为常数。昂萨格发现,唯象系数矩阵是对称的,即Lij=Lji,
这就是著名的昂萨格倒易关系。这个关系的存在不依赖于具体物质,或具体过程,在线性不可逆过程中具有普遍意义,因而成为线性区非平衡热力学的主要基础之一。
昂萨格倒易关系应用于实际问题时,得到了很好的验证。其中对温差电偶和力热现象的研究是它成功的突出例证。
温差电偶效应 用两种不同金属A、B焊接形成闭合回路,人们发现了塞贝克效应、珀耳帖效应、汤姆孙效应(见温差电现象)。利用昂萨格关系可以证明,塞贝克系数、珀耳帖系数、汤姆孙系数都满足普遍的关系式,即汤姆孙第一关系
和汤姆孙第二关系ΠAB=SABT。
而这两个关系已为实验证实,所以昂萨格关系的正确性也就得到了证实。
费德森效应 实验发现系统中不同区域的温度不仅造成热流,也会引起粒子流Jn=λ│ΔT│
式中λ称为热力系数。这种效应称为费德森效应,也叫热力效应。同时发现压差不仅引起粒子流,也产生热流JQ=K│Δp,
式中K称为力热系数。利用昂萨格关系可以证明K=λTv,
式中v为物质比容。尽管λ和K 随物质性质而异,但实验证实上述关系在不可逆过程的线性区是普遍成立的。
人们常用"流"和"力"来说明不可逆过程。在扩散过程中的物质流密度,热传导中的热流密度,化学反应中的反应速度等都称为流,用Ji(i=1,2,...,n)表示。引起流的相应力为浓度梯度、温度梯度、化学亲合力等用Xi(i=1,2,...,n)表示。在线性区它们的关系唯象地写为
唯象系数Lij为常数。昂萨格发现,唯象系数矩阵是对称的,即Lij=Lji,
这就是著名的昂萨格倒易关系。这个关系的存在不依赖于具体物质,或具体过程,在线性不可逆过程中具有普遍意义,因而成为线性区非平衡热力学的主要基础之一。
昂萨格倒易关系应用于实际问题时,得到了很好的验证。其中对温差电偶和力热现象的研究是它成功的突出例证。
温差电偶效应 用两种不同金属A、B焊接形成闭合回路,人们发现了塞贝克效应、珀耳帖效应、汤姆孙效应(见温差电现象)。利用昂萨格关系可以证明,塞贝克系数、珀耳帖系数、汤姆孙系数都满足普遍的关系式,即汤姆孙第一关系
和汤姆孙第二关系ΠAB=SABT。
而这两个关系已为实验证实,所以昂萨格关系的正确性也就得到了证实。
费德森效应 实验发现系统中不同区域的温度不仅造成热流,也会引起粒子流Jn=λ│ΔT│
式中λ称为热力系数。这种效应称为费德森效应,也叫热力效应。同时发现压差不仅引起粒子流,也产生热流JQ=K│Δp,
式中K称为力热系数。利用昂萨格关系可以证明K=λTv,
式中v为物质比容。尽管λ和K 随物质性质而异,但实验证实上述关系在不可逆过程的线性区是普遍成立的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条