|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
您的位置: 首页 -> 词典 -> 逆Broyden秩1拟Newton方法
1) single rank inverse Broyden quasi Newton method
逆Broyden秩1拟Newton方法
2) single rank inverse Broyden iterative method
逆Broyden秩1迭代法
3) rank-two BFS quasi Newton method
BFS秩2拟Newton方法
1.
Through the improving of Newton iterative formula,it obtains the rank-two BFS quasi Newton method.
通过对Newton迭代公式的改进,得到BFS秩2拟Newton方法,通过一具体例子,在收敛速度上与逆Broyden秩1方法进行比较,特定条件下,BFS秩2方法比逆Broyden秩1方法收敛速度快,在MATLAB7。
4) Broyden method
Broyden方法
1.
On the convergent condition of the Broyden method.;
Broyden方法的收敛条件
2.
Broyden method for nonlinear equation in several variables is presented, its local and semilocal convergence properties are discussed, and its superlinear convergence rate is estimated.
本文提出了求解多元非线性方程的Broyden方法,讨论了该方法的局部与半局部收敛性,并估计了其超线性收敛速度,数值实验表明,新方法是可行有效的,并且其计算效率高于方向Newton法和方向割线法。
5) Broyden-like method
Broyden族方法
6) smoothing Broyden method
光滑Broyden方法
补充资料:拟蒙特卡罗方法
与monte carlo方法相似,但理论基础不同的方法—“拟蒙特卡罗方法”(quasi-monte carlo方法)—近年来也获得迅速发展。我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例。这种方法的基本思想是“用确定性的超均匀分布序列(数学上称为low discrepancy sequences)代替monte carlo方法中的随机数序列。对某些问题该方法的实际速度一般可比monte carlo方法提出高数百倍,并可计算精确度。 蒙特卡罗(monte carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的monte carlo—来命名这种方法,为它蒙上了一层神秘色彩。 monte carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。 考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?monte carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷n个点落于“图形”内,则该“图形”的面积近似为m/n。 可用民意测验来作一个不严格的比喻。民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。其基本思想是一样的。 科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(course dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。monte carlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。以前那些本来是无法计算的问题现在也能够计算量。为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|