1) weighted frequent pattern tree
加权频繁模式树
1.
A highly efficient algorithm of weighted association rules mining in telecommunication networks based on weighted frequent pattern tree is proposed.
该文提出了一种高效的基于加权频繁模式树的通信网告警关联规则挖掘算法,算法性能测试表明,该算法与已有的加权关联规则挖掘算法相比较,节约了大量的存储空间,提高了算法的挖掘速度,对通信网的故障诊断和故障定位有着积极的意义。
2) frequent pattern tree
频繁模式树
1.
An improved frequent pattern tree growth algorithm;
一种改进的频繁模式树生长算法
2.
Algorithm for mining associative classification rules based on frequent pattern tree;
基于频繁模式树的关联分类规则挖掘算法
3.
Mining frequent pattern tree in Web data;
Web数据中频繁模式树的挖掘
3) FP-Tree
频繁模式树
1.
An Algorithm for Mining Connected Closed Frequent Subgraphs Based on FP-Tree
基于频繁模式树的频繁连通闭图集挖掘算法
2.
Aiming at the problem that traditional methods with only one minsup can not completely reflect different appearing frequencies and natures of different data items,based on FP-Tree,a new algorithm is proposed called MSDMFIA(Multiple minimum Supports for Discover Maximum Frequent Item sets Algorithm).
针对单一最小支持度挖掘关联规则不能反应不同数据项出现频度与性质的问题,提出了一个基于频繁模式树的多重支持度关联规则挖掘算法MSDMFIA(Multiple minimum Supports for Discover Maximum Fre-quent Item sets Algorithm),根据不同数据项的特点定义多重支持度,通过挖掘数据库中的最大频繁项目集,计算最大频繁候选项目集在数据库中的支持度来发现关联规则。
3.
This paper proposes an efficient FP-tree based algorithm,MMFP(Mining Maxim.
通过对最大频繁模式挖掘的问题描述 ,以及关键问题的分析 ,针对频繁模式树 (FP- tree)和最大频繁模式的特点 ,给出了基于频繁模式树的最大频繁模式挖掘算法 (MMFP) ,采取先挖掘候选最大频繁模式再判断子集的方法 ,经示例分析表明该算法是有效的。
5) FP-tree method
频繁模式树算法
6) frequent closed pattern tree
频繁闭模式树
1.
A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory and time consuming problems.
为了解决频繁闭项目集挖掘中时间和存储开销大的问题,提出了一种基于FC-tree(频繁闭模式树)的频繁闭项目集挖掘算法max-FCIA(最大频繁闭项目集挖掘算法)。
补充资料:加权平均模式
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条