1) higher-order V-invexity
高阶V-不变凸
1.
In this paper,we introduce a class of Mond-weir higher-order duality in non-differentiable mathematical programming problem and the notions of higher-order V-invexity and higher-order generalized V-invexity.
文章首先引入了一类不可微数学规划的高阶Mond-Weir对偶模型以及高阶V-不变凸、高阶广义V-不变吐的概念。
2) higher-order generalized V-invexity
高阶广义V-不变吐凸
3) higher order η-invexity
高阶η-不变凸
1.
The concepts of higher order η-invexity and higher order η-quasi-invexity are adopted in order to discuss weak and strong duality theorems.
文章首先引入极小极大分式规划问题的一个最优性必要条件,给出高阶η-不变凸函数和高阶η-不变拟凸函数的定义。
4) higher order η-quasi-invexity
高阶η-不变拟凸
1.
The concepts of higher order η-invexity and higher order η-quasi-invexity are adopted in order to discuss weak and strong duality theorems.
文章首先引入极小极大分式规划问题的一个最优性必要条件,给出高阶η-不变凸函数和高阶η-不变拟凸函数的定义。
5) generalized(V,ρ) invex functions
(V,ρ)不变凸函数
6) V-ρ uninvex functions
V-ρ一致不变凸函数
1.
Based on generalized uninvex function,V-ρ invex function and type I function,a class of V-ρ uninvex functions was difined.
在广义一致凸、V-ρ不变凸函数和Ⅰ型凸函数的基础上,定义了一类V-ρ一致不变凸函数,讨论了涉及这类函数的多目标规划的对偶性条件,在更弱的凸性下,获得了一些重要的结果。
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条