1) invex-convexlike
不变类凸
1.
Firstly, Adjacent derivative, invex-convexlike, quasi-invex-convex like and Pseudo-invex-convexlike for single-valued with parameters in Banach spaces are defined.
在Banach空间中,定义了含参变数的映射的Adjacent导数及不变类凸、拟不变类凸和伪不变类凸。
2) quasi-invex-convexlike
拟不变类凸
3) Pseudo-invex-convexlike
伪不变类凸
4) generalized type-I invexity
Is类不变凸性
5) invex set
不变凸集
1.
To improve research on the generalized convex function,some new characteristics of the prequasi-invex function are figured out by means of the cographical set of function(E(f)=(x,α)∶x∈K,α∈R,f(x)αH)and η-invex set,and its two applications in the mathematical programming problem are proposed.
借助于η-不变凸集和函数的上图(E(f)={(x,α)∶x∈K,α∈R,f(x)≤α})得到了预不变拟凸函数的几个新的性质,然后还给出了预不变拟凸函数在数学规划问题中的两个重要应用,从而完善了对此类广义凸函数的研究。
2.
Minty(strong) weak vector variational-like inequality and Stampacchia(strong) weak vector variational-like inequality had the same solution in the case that a matrix-valued function defined on invex set was a continuous invariant pseudomonotone mapping.
讨论两类向量似变分不等式解的关系问题,指出当定义在不变凸集上的映射是不变伪单调连续时,Minty(强)弱向量似变分不等式的解和Stampacchia(强)弱向量似变分不等式的解相同。
3.
To improve research on the generalized convex function,some new characteristics of the prequasi-invex function are figured out by means of the cographical set of function(E(f)={(x,α):x∈K,α∈R,f(x)≤α})and-invex set,and its two applications in the mathematical programming problem are proposed.
首先给出例子说明了此类广义凸函数的存在性,然后利用强η-不变凸集和函数的上图(E(f)={(x,α):x∈K,α∈R,f(x)≤α})得到了强预不变凸函数的几个重要性质,并用另一方法给出它的一个判别定理的简化证明,最后还给出了强预不变凸函数在数学规划问题中的一个重要应用,从而完善了对此类广义凸函数的研究。
6) SKT invexity
SKT不变凸
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条