说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 格同态C_0-半群
1)  Co-semigroup oF lattice homomorphism
格同态C_0-半群
2)  C 0 semigroup
C_0半群
3)  C_0 semigroup
C_0半群
1.
By using the method of functional analysis,especially,the linear operator theory and C_0 semigroup theory on Banach space,the well-posedness of solution and the existence of positive solution are studied.
使用泛函分析方法,特别是Banach空间上的线性算子理论和C_0半群理论,证明了系统解的适定性以及正解的存在性,证明了系统解的渐近稳定性,指数稳定性以及严格占优本征值的存在性,证实了实际问题中相关假设的合理性。
2.
We give a complete introduction about C_0 semigroups in Banach space.
本章对Banazh空间中的C_0半群给出一个较完整的介绍,主要包括:引言,算子半群的预备知识,算子半群的定义及性质,强连续半群与Hille-Yosida定理,半群表示。
4)  C_0-semigroup
C_0-半群
1.
Irreducibility of the Positive Contraction C_0-semigroup Generated by M/G/1 Queueing Operator;
M/G/1排队系统算子生成正压缩C_0-半群的不可约性
2.
This paper discusses the existence of solutions of initial value problem for semilinear evolution equation with noncompact semigroup u (t)+Au(t)=f(t, u(t)), t≥0; u(0)=x_0 in a Banach space E, where -A is the infinitesimal generator of an equicontinuous C_0-semigroup, and f: [0, ∞)×E→E is continuous.
本文研究Banach空间E中具有非紧半群的半线性发展方程初值问题u′(t)+Au(t)=f(t,u(t)),t≥0;u(0)=x_0解的存在性,其中-A为E中等度连续C_0-半群的生成元,f:[0,∞)×E→E连续。
3.
In this paper we have proved that a C--semigriop on Banach space X can be-come of C_0-semigroup by means of the method to restrict the C-semigroup onto a smallerBanach space F with a stronger norm; and they have the same analyticity.
在这篇文章中证明了C-半群在限制空间中为C_0-半群,首次讨论了C-半群的解析
5)  C 0 semigroup
C_0-半群
6)  C_0-semigroup
C_0半群
1.
Then,by the positive C_0-semigroup generated by system operator,it is shown that there exists a steady nonnegative solution of the system which is just the normalized eigen- vector corresponding to eigenvalue 0 of system operator.
应用C_0半群理论,证明了服从一般分布的可修复系统的唯一非负时间依赖解的存在性,并指出该解恰是系统算子的0本征值对应的规范化后的本征向量。
2.
Secondly, we can write the above system as an abstract system, then give the result that the corresponding C_0-semigroup is exponentially stable.
第二章的第一节给出具有阻尼及动态边界条件的弹性板系统:第二节把(1)抽象为一阶发展方程,并给出了相应的C_0半群是指数稳定的结果。
3.
Besides, system operators can genetate a positive contraction C_0-semigroup in L~1space , so the solution of the system is nonnegative with probability character.
其次,系统算子均能生成L~1空间中正的压缩C_0半群,故模型的解为非负的,具有概率性质的解,符合实际的物理意义。
补充资料:自同态半群


自同态半群
automorphism semi-group

自同态半群【。日朋职神蜘1胭拍~gn月Ip;3职翻叩中翻佣uo二yrpynna] 某对象(赋以某种结构口的集合X)的自同态对于乘法(依次进行变换)运算组成的半群.对象X可以是向量空间、拓扑空间、代数系、图等等;通常把它看成是某范畴(cat咫驹ry)的对象,而通常该范畴中的态射(Ino印hism)是保持口中关系的映射(线性变换或连续变换,同态等).X的全部自同态(即到它的子对象的态射)的集合EndX是X的全部变换的半群几(见变换半群沁田旅几m以tion~~g毛叩”的子半群. 半群EndX可以包含结构a的大量的信息.例如设X和Y分别是除环F和H上的维数)2的向量空间,若它们的自同态(即,线性变换)的半群EndX和EndY同构,就推出X和Y(特别是F和H)同构.某些前序集和格,每个B以〕le环,某些别的代数系都被它们的自同态半群决定到同构.对某些模和变换半群这也是对的.X的类似的信息由EndX的某个真子半群倒,拓扑空间的同胚变换的半群)所负载. 用这种方法,对象X的一些类(例,拓扑空间)可以由它们的部分自同态的半群也即是作为X的子对象的态射的部分变换的半群所刻画.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条