1) iteration compensation
迭代补偿法
2) iterative compensation
迭代补偿
1.
The classical Preisach model for the hysteresis of GMA is introduced briefly, and a novel iterative compensation algorithm is proposed to avoid calculating Preisach converse model directly.
分析了异圆销孔的镗削加工特点,在迭代补偿的基础上设计了重复控制补偿器,并结合两种补偿方法,给出了一种基于复合前馈补偿的PID控制方法,最后通过实验检验了方法的有效性。
3) compensating iterative
补偿迭代
1.
(3) The compensating iterative method is more efficient than the Gauss-Sei.
分析了Horn-Schunk方法在运动边界处,光流场不能很好地保持不连续性的原因,并从3个方面对Horn-Schunk迭代模型作了改进:(1)在能量方程中用可变的权值系数代替原来的常权值系数;(2)采用一种新方法求解迭代方程中的速度均值,新方法体现了邻域的亮度差别对速度扩散的影响;(3)引入补偿迭代方法去求解相关的Euler-Lagrange方程,实验证明这种迭代方法比Gauss-Seidel方法更加有效。
4) error-comp iterative algorithm
误差补偿迭代算法
1.
The technique of momentum item which comes from improved strategy of BP(back propagation) artificial neural networks was introduced into load distribution for tandem hot strip rolling,and then a new iterative algorithm named error-comp iterative algorithm was put forward,its derivation process was introduced,the rationality of algorithm was analyzed.
将源于BP人工神经网络改进策略的动量项技术引入到带钢热连轧负荷分配中来,提出了误差补偿迭代算法,介绍了该算法的推导过程,并对算法的合理性进行了分析。
5) iterative compensation control
迭代补偿控制
1.
A closed loop controller based on inverse kinematics is used to control the simulator,and an open loop iterative compensation controller based on forward kinematics is developed at the same time to correct the posture driving signal and make simulator\'s response approximate the posture command gradually.
该试验台利用运动学反解算法进行闭环控制,并采用基于运动学正解的开环迭代补偿控制算法修正姿态驱动信号,使试验台的响应逐渐逼近期望的姿态指令。
补充资料:策略迭代法
动态规划中求最优策略的基本方法之一。它借助于动态规划基本方程,交替使用"求值计算"和"策略改进"两个步骤,求出逐次改进的、最终达到或收敛于最优策略的策略序列。
例如,在最短路径问题中,设给定M个点1,2,...,M。点M是目的点,сij>0是点i到点j的距离i≠j,сij=0,i,j=1,2,...,M,要求出点i到点M的最短路。记??(i)为从i到M的最短路长度。此问题的动态规划基本方程为
(1)其策略迭代法的程序如下:选定一初始策略u0(i),在这问题中,策略u(i)的意义是从点i出发走一步后到达的点,而且作为策略,它是集{1,2,...,M-1}上的函数。由u0(i)解下列方程组求出相应的值函数??0(i):
再由??0(i)求改进的一次迭代策略u1(i),使它是下列最小值问题的解:然后,再如前面一样,由u1(i)求出相应的值函数??1(i),并由??1(i)求得改进的二次迭代策略u2(i),如此继续下去。 可见求解(1)的策略迭代法的程序由下列两个基本步骤组成:
①求值计算 由策略 un(i)求相应的值函数??n(i),即求下列方程的解:
②策略改进 由值函数??n(i)求改进的策略,即求下列最小值问题的解:式中规定,如un(i)是上一问题的解,则取un+1(i)=un(i)。
在一定条件下,由任选的初始策略出发,轮换进行这两个步骤, 经有限步N后将得出对所有i,uN+1(i)=uN(i)这样求得的uN(i)就是最优策略,相应的值函数??N(i)。是方程(1)的解。
对于更一般形式的动态规划基本方程
(2)这里??,H,φ为给定实函数。上述两个步骤变成:
①求值计算 由策略un(x)求相应的值函数 ??n(x),即求方程 之解,n=0,1,2...。
②策略改进 由值函数??n(x)求改进的策略un+1(x),即求最优值问题的解。
对于满足适当条件的方程(2)和初始策略,上述两个步骤的解存在,并且在一定条件下,当n→ 时,所得序列{??n(x)}与{un(x)}在某种意义下分别收敛于(2)的解和最优策略。
策略迭代法最初是由R.贝尔曼提出的。1960年,R.A.霍华德对于一种马尔可夫决策过程模型,提出了适用的策略迭代法,给出了相应的收敛性证明。后来,发现策略迭代法和牛顿迭代法在一定条件下的等价性,于是,从算子方程的牛顿逼近法的角度去研究策略迭代法,得到了发展。
对于范围很广的一类马尔可夫决策过程,其动态规划基本方程可以写成;式中??∈V,对所有 γ∈Γ:r(γ)∈V,γ为 V→V的线性算子,Γ为这种算子的族,而V 则是由指标值函数所构造的函数空间。假设当 ??(γ)是方程 r(γ)+γ??=0 的解时, 它是对应于策略γ的指标值函数。最优策略 γ定义为最优值问题的解。这时由策略迭代法所求得的序列 {??n}和{γn}满足下列关系其中为 γn+1的逆算子。当σ是加托可微时, γn+1是σ在??n处的加托导数。于是,上面的关系恰好表达了牛顿迭代法在算子方程中的推广。
例如,在最短路径问题中,设给定M个点1,2,...,M。点M是目的点,сij>0是点i到点j的距离i≠j,сij=0,i,j=1,2,...,M,要求出点i到点M的最短路。记??(i)为从i到M的最短路长度。此问题的动态规划基本方程为
(1)其策略迭代法的程序如下:选定一初始策略u0(i),在这问题中,策略u(i)的意义是从点i出发走一步后到达的点,而且作为策略,它是集{1,2,...,M-1}上的函数。由u0(i)解下列方程组求出相应的值函数??0(i):
再由??0(i)求改进的一次迭代策略u1(i),使它是下列最小值问题的解:然后,再如前面一样,由u1(i)求出相应的值函数??1(i),并由??1(i)求得改进的二次迭代策略u2(i),如此继续下去。 可见求解(1)的策略迭代法的程序由下列两个基本步骤组成:
①求值计算 由策略 un(i)求相应的值函数??n(i),即求下列方程的解:
②策略改进 由值函数??n(i)求改进的策略,即求下列最小值问题的解:式中规定,如un(i)是上一问题的解,则取un+1(i)=un(i)。
在一定条件下,由任选的初始策略出发,轮换进行这两个步骤, 经有限步N后将得出对所有i,uN+1(i)=uN(i)这样求得的uN(i)就是最优策略,相应的值函数??N(i)。是方程(1)的解。
对于更一般形式的动态规划基本方程
(2)这里??,H,φ为给定实函数。上述两个步骤变成:
①求值计算 由策略un(x)求相应的值函数 ??n(x),即求方程 之解,n=0,1,2...。
②策略改进 由值函数??n(x)求改进的策略un+1(x),即求最优值问题的解。
对于满足适当条件的方程(2)和初始策略,上述两个步骤的解存在,并且在一定条件下,当n→ 时,所得序列{??n(x)}与{un(x)}在某种意义下分别收敛于(2)的解和最优策略。
策略迭代法最初是由R.贝尔曼提出的。1960年,R.A.霍华德对于一种马尔可夫决策过程模型,提出了适用的策略迭代法,给出了相应的收敛性证明。后来,发现策略迭代法和牛顿迭代法在一定条件下的等价性,于是,从算子方程的牛顿逼近法的角度去研究策略迭代法,得到了发展。
对于范围很广的一类马尔可夫决策过程,其动态规划基本方程可以写成;式中??∈V,对所有 γ∈Γ:r(γ)∈V,γ为 V→V的线性算子,Γ为这种算子的族,而V 则是由指标值函数所构造的函数空间。假设当 ??(γ)是方程 r(γ)+γ??=0 的解时, 它是对应于策略γ的指标值函数。最优策略 γ定义为最优值问题的解。这时由策略迭代法所求得的序列 {??n}和{γn}满足下列关系其中为 γn+1的逆算子。当σ是加托可微时, γn+1是σ在??n处的加托导数。于是,上面的关系恰好表达了牛顿迭代法在算子方程中的推广。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条