1) Impulsive Fredholm integral equations
脉冲Fredholm型积分方程
2) impulsive Fredholm integral equation
脉冲Fredholm积分方程
1.
In this paper,the authors obtain the existence,uniqueness of the coupled quasi-solution and the solutionfor nonlinear impulsive Fredholm integral equations in Banach space by means of the mixed monotone theory and conetheory.
利用混合单调理论及锥理论得到了Banach空间中非线性脉冲Fredholm积分方程耦合拟解及解的存在性、惟一性。
3) Fredholm integral equations
Fredholm型积分方程
1.
The second chapter is the main text,we first establish the two existence results for positive solutions of singular and nonsingularFredholm integral equations and prove them.
第二章考虑下面Fredholm型积分方程u(z)=∫_0~1k(t,s)f(s,u(s))ds的正解存在性问题。
4) Fredholm Ⅱ integral equations
Fredholm-型积分方程
5) Fredholm integral equation
Fredholm积分方程
1.
Utilizing Muki method,the second kind of Fredholm integral equation describing the interaction between a pile and the half space is obtained.
根据Biot固结理论,采用Laplace和Hankel变换方法得到了半空间饱和土体内受垂直载荷作用下的变换域内基本解,再根据虚拟桩法,得出了单桩的第二类Fredholm积分方程,最后通过对积分方程的数值求解得出了在圆形载荷作用下,单桩桩侧的负摩擦力以及桩的孔压消散变化的情况。
2.
The second kind of Fredholm integral equation for the pile was establis.
利用半空间饱和土的基本解和自由波场解及桩、土间变形协调条件,建立了桩土共同作用的第二类Fredholm积分方程。
3.
Utilizing Muki method,the second kind of Fredholm integral equation describing the dynamic interaction between a pile and the half space is obtained.
再根据虚拟桩法,得出了移动载荷作用下桩基的第二类Fredholm积分方程。
6) Fredholm integral equations
Fredholm积分方程
1.
An interpolation-based adaptive solution method for Fredholm integral equations of the second kind;
第二类Fredholm积分方程的一个基于插值的自适应解法(英文)
2.
In this thesis, we present a fast self-adaptive algorithm for Fredholm integral equations of the second kind with weakly singular kernels.
本文考虑核函数有弱奇性的第二类Fredholm积分方程的自适应快速数值解法,即事先给定数值解的精度,设计算法确定相关的参数使得数值解满足精度要求。
补充资料:卷积型积分方程
卷积型积分方程
integral equation of convolution type
卷积型积分方程【加魄间闪娜七.ofc傲IVI汕浦.lty碑;“,Te印~oeyP二HeHHe THna cBeP~l 在卷积变换的积分号下包含未知函数的积分方程(见积分算子(访teg那1 oPelator)).卷积型积分方程的独特性是这种方程的核依赖于自变量的差.最简单的例子是方程 。(:)一丁、(。一:),(:)d;一f(。),一。<:<二, 一的(l)这里k和f是给定的函数而印是未知函数.设k,f〔L、(一的,的)且在同一类中寻求解.为了(l)可解,必要充分条件是 l一K(又)尹0,一的<又<田,(2)这里K是k的F砚时曰变换(Founer tmnsfonn).当(2)成立时,方程(l)在类Ll中有唯一的解,用公式 ,(x)一f(x)一丁、1(x一:)f(。)、:(3)表示,这里kl‘L;(一二,的)是由其FouJ交r变换 K.(几)=l一[l一‘(又)]一’唯一确定的.半直线上卷积型方程(Wk,er一HOPf方程(Wiener一HoPf闪Uation)) ,(:)一丁、(。一:),(:)d:一f(:),0‘。<。, 0 (4)在研究各种具有理论和实用特征的问题中产生(见【11,阱」). 设右边f和未知函数甲属于L,(0,的)(1毛p簇的),核k6L,(一叨,co)且以劝“1一K(劝笋0,一的<又<的.(5) 函数“(对称为方程(4)的象征(s抑喊).方程(4) 的指标(访dex)是数 、一耐:一兴i己;arg。).。6) 一2兀J一‘一”‘、“,·、。少 如果K=0,则由方程 ,·K·(,卜exp卜告h·(;)· 二1「Ina(r、 士二二-甲见二二二二止止目d二 2二i几:一又一‘ 定义的函数K、,K一分别是函数k+,k_‘L,(一的, 的)的Fo~变换,使得对t<0,k、(t)=k_(一t) 二0.在上面的条件下,方程(4)有唯一解,它可以 用公式 ,(才)一f(‘,+丁厂(‘,:),(:)d:(8) 0 表示,这里 r(t,;)”此十(t一:)+左一(t一;)+ +丁、+(:一:)、一(:一;)、:. 0如果K<0,方程(4)的所有解用公式 。(。)一厂(。)+*睿1·*:*一+ ·)一‘!,·,〔‘(·)·落,·*一〕‘·(9)给出,这里c*是任意常数, r。(t,;)二k望,(t一:)+介望’(r一;)+ +f、望,(:一:)k臼,(:一;)、:,(,o) 0且函数k(:),人望’〔L,(一。,。)是由它们的FOuner变换: l+尺仁’(又)二fl+K;0,(又)l(又十i)‘(又一i)一“, (11) 1+K望)(又)= 一exp「一冬In。(*)*共了鱼立位工了. 一f LZ一、八’2:i丈:一又」’ ‘,,、_「,。,.、、「又一卜11‘ 。(、,一。,一K‘“,,L廿J唯一决定的. 当K<0时,对应于〔4)的齐次方程恰有)刻个线性无关解切,,…,叭、,它们在任何有界区间上是绝对连续函数;可以选取这些解,使得对k二l,…,}、卜1,职*,,(t)二势妥(t),沪*(o)一o,而气.(o)笋0 如果K>O,这方程可解仅当以下条件成立: 丁.厂(:)*,(。)、:一。,、一1.…,‘,(,2) O这里价:,二,价‘是(4)的转置齐次方程: *(;)一J、(:一‘)*(:)碑:一。(,3) 0的一个线性无关解系.在这些条件下,这(唯一的)解由公式 ,(。)一f(‘)+了;、(:,:)f(:)“:(,4) 0给出,这里 r.(t,:)二k望’(t一:)+k(--0,(t一:)+ +丁、望,(‘一:,、:,(:一:)、:, 0而函数k华,(r),kU,(t)6L,(一二,二)的Founer变换Kto)(对和K望’(劝由方程 r.‘.,‘、_。1.。‘〔,、,.、、「,+11“ l+、:,(、卜「,+K赚”‘“,’L令全幸」和方程(11)定义.对方程(4),M又1」ler的定理成立(见奇异积分方程(5111邵har jntel笋d叫吸加n)). 方程(4)的理论中第一批有意义的结果在汇川中得到、其中为了解对应于(4)的齐次方程,给出了一个有效方法(所谓wi~一HoPf法(从金n口一HoPfmetllod)),该法要求假设核和所求解满足条件:对某对O<“分解(facto丘乙-tion of a filllction)的想法,即把h(劝表成积h尸一(劝·h*(对的可能性,其中h_,h,分别是半平面Im又一a上的全纯函数,且满足一定的附加要求.这些结果已经得到发展和增强(见汇41). 已经发展了一种把方程(4)化成线性识别的边值问题的方法.按这种方法,方程(4)在以下假设下己有解:k‘L、,2(一阅,的),K6Lip。(一田,co)(0<:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条