说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 脉冲积分方程
1)  impulsive integral equation
脉冲积分方程
1.
The existence of positive solutions of impulsive integral equations of polynomial type is obtained by means of the upper and lower solution method, and the applications to Sturm Liouville boundary value problems of impulsive differential equations are offered.
利用上下解方法给出了多项式型脉冲积分方程的正解的存在性,并应用到脉冲微分方程的Sturm-Liouvile边值问题上去。
2)  impulsive Fredholm integral equation
脉冲Fredholm积分方程
1.
In this paper,the authors obtain the existence,uniqueness of the coupled quasi-solution and the solutionfor nonlinear impulsive Fredholm integral equations in Banach space by means of the mixed monotone theory and conetheory.
利用混合单调理论及锥理论得到了Banach空间中非线性脉冲Fredholm积分方程耦合拟解及解的存在性、惟一性。
3)  Impulsive integro-differential equation
脉冲积-微分方程
4)  impulsive differential-integro equation
脉冲微积分方程
5)  impulsive integro-differential equations
脉冲积分-微分方程
1.
By using the Sadovskii fixed point theorem,the existence and uniqueness of solutions for the initial value problem of a class of nonlinear singular impulsive integro-differential equations on half-line in Banach spaces is investigated under more extensive conditions,and the known results in the literatue are extended and improved.
本文在更广泛的情况下,利用Sadovskii不动点定理研究了Banach空间中半直线上一类非线性奇异脉冲积分-微分方程初值问题解的存在性和唯一性,推广并改进了已有文献中的相关结果。
6)  impulsive integro-differential equation
脉冲积分微分方程
1.
Under loose conditions,the existence of solutions to initial value problem are studied for second order impulsive integro-differential equation with infinite moments of impulse effect on the positive half real axis in Banach spaces.
在比较宽松的条件下,研究了Banach空间中二阶脉冲积分微分方程在正半实轴上具有无穷个脉冲点的初值问题的解的存在性。
2.
In this paper,we introduce the classical solutions for a class of impulsive integro-differential equations, and apply the semigroup theory to study its existence and uniqueness under some conditions.
 首先引入一类被m次积分解类刻画的脉冲积分微分方程的古典解的定义,然后利用半群理论得出古典解的存在性和唯一性。
补充资料:Abel积分方程


Abel积分方程
Abel integral equation

Abel积分方程【Abel in.雌旧equ硕皿A6eJ.“I.Tef-pa月b.0吧坪朋业服e飞 积分一厅程 i黯*一f(x),、均这个方程是在求解Abel问题(Abel Problem)时推出 的.方‘程 i恶:*二f(x),一“、2)称为广义Abel积分方程(罗neralized Abel irlte『aleqUation).其中a>o,0<,<】是已知常数,厂(x)是已 知函数,而诚x)是未知函数.表达式(x一s)““称为Abel 积分方程的核( kernel)或Abel核(Abel kernel).Abel 积分方程属于第一类v日te皿方程〔Volterra equa- tion).方程 争一里红上-ds_,、x、.。、*、。。3) 么}x一s}- 称为具有固定积分限的Abel积分方程(Abel integral 叫uation with fixed limits). 如果f(x)是连续可微函数,则Abel积分方程(2) 具有唯一的连续解,这个解由公式 sma,d今f(r、dt“、 坦《XI=——,一一川‘日‘曰‘‘‘‘~-叫、,厂 仃ax么(x一t),一“或者、、ina,!。a、今厂,(,、*1 叭戈今二—}一十l一}、J) 万l(x一“)’“么(x一t)’‘’{给出.公式(5)在更一般的假设下给出了Abel方程(2)的解(见【3},[4]).从而证明了(【3]):如果八;。)在区间【ab]一上绝对连续,则Abel积分方程(2)具有由公式(5)给出的属于Lebesgue可积函数类的唯一解关于Abel积分方程(3)的解,见121;亦见{61.【补注】(2)的左边也称为凡emann一Liouville分式积分,其中Re在
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条