说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 混合能量变分原理
1)  mixed energy variation principle
混合能量变分原理
1.
According to the control equation of cylindrical arch dam and mixed energy variation principle,the state equation is derived.
本文应用现代控制论中的状态空间理论,引入圆柱形拱坝内应力与位移作为状态变量,根据圆柱形拱坝的控制方程及其混合能量变分原理,推导出状态方程。
2)  variational principle with mixed variables
混合变量的变分原理
3)  principle of minimum potential energy with mixed variables
混合变量最小势能原理
1.
Application of principle of minimum potential energy with mixed variables in stability of elastic thin rectangular plates with a free end;
应用混合变量最小势能原理求解有一个悬空角点弹性矩形薄板的稳定
4)  sub-region mixed energy principle
分区混合能量原理
1.
The sub-region mixed finite element is developed based on the sub-region mixed energy principle.
基于分区混合能量原理的分区混合元法是一种高精度有限元方法,可用于分析含裂纹、孔洞、切口等缺陷的问题。
5)  mixed variational principle
混合变分原理
1.
The mixed spline element equations of bending problems with two kinds of varilables of shallow shells are derived based on the mixed variational principle.
根据混合变分原理 ,推导出扁壳弯曲问题的二类变量混合样条元方程。
2.
Based on instantaneous mixed variational principle and spline interpolate functions, the spline equation of motion is derived.
基于瞬时混合变分原理与乘积型二元三次 B样条函数 ,以板壳为例 ,建立样条动力方程。
3.
In this paper, based on control equation of cylindrical shell and its mixed variational principle.
根据圆柱壳的控制方程及其混合变分原理 ,引入对偶变量即应力与位移作为状态变量 ,导出圆柱壳的状态方程 ,研究其解法。
6)  energy variation principle
能量变分原理
1.
Based on energy variation principle,the governing differential equations and the corresponding boundary conditions of box girder with consideration for the shear lag effect and shear deformation as well as rotational inertia were induced.
以能量变分原理为基础,综合考虑剪力滞后效应、剪切变形和转动惯量的影响,推导出箱形截面梁的控制微分方程和相应的自然边界条件,据此获得几种常用边界条件(简支、悬臂、连续、两端固支)的固有频率方程,提出一种能对工程中常用矩形薄壁箱梁自振特性进行分析的方法。
2.
The energy variation principle is applied to establish the governing differential equations and corresponding natural boundary conditions on the static and dynamic characteristics of thin-walled I-beam, and closed-form solutions of generalized displacements are obtained.
该文以能量变分原理为基础,建立了工字形梁静、动力分析的控制微分方程和自然边界条件,获得了相应广义位移的闭和解。
补充资料:Владимиров变分原理


Владимиров变分原理
Vladimirov variational principle

  B几a八,M“po。变分原理【Vla成m初ov var抽6倒目画州沙;助a及“M“poBa .aP“a”“OHH“曲nP“H”Hn} 对平稳单速齐次输运方程(见输运方程,数值方法(tmnsport eqUation,nurr犯ncal服thed))(。,v*)+:(、)*一*丁。(;,。。)*(。,,、)、。,, }。‘!一,(l) 拜。二(豆‘,豆),带边界条件 沙{,。r=o,(几,万)  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条