1) smooth complementarity constraints
光滑化互补约束
2) complementarity constraints
互补约束
1.
A special kind of optimization problems with linear complementarity constraints was studied.
本文讨论线性互补约束规划问题。
2.
Generator reactive limiter, load tap changing limiter and static var compensator adjust limiter were modeled by nonlinear mixed complementarity constraints and incorporated into the optimization problem to determinate critical point of voltage stability of power systems.
通过临界点的互补约束的严格性条件和拉格朗日乘子快速判断临界点的类型。
3.
As we know, optimization problems with complementarity constraints have a wide application in economy, engineering design, game theory, making decision and so on, so in recent years there has been a growing literature on these important optimization problems.
由于带互补约束的优化问题在经济、工程技术、对策决策等领域有着广泛的应用,因此,对此类问题的研究备受关注。
3) smooth constraint
光滑约束
1.
Analysis of electromagnetic fields using the finite element method with smooth constraints;
用带有光滑约束的有限元法计算电磁场
2.
In this paper, an indirect smooth constraint technique is introduced to genetic inversion.
光滑约束技术在线性反演中具有重要的作用 ,但在遗传算法的反演中则很难直接施加于模型参数 ,其原因是采用光滑处理后的模型参与迭代后 ,模型的多样性受到很强的压制 ,并在少量的迭代过程中使种群的各个模型趋向一致 ,从而得不到满足条件的最优解 。
4) mathematical program with complementarity constraint
互补约束优化问题
1.
A relaxation method for mathematical program with complementarity constraints is given.
给出求解互补约束优化问题(MPCC)的松弛法,并研究其松弛问题的稳定点的收敛性质。
5) linear complementary constraints
线性互补约束
1.
A technique of reducing dimension on sequential system of linear equations algorithm for optimization with linear complementary constraints;
线性互补约束优化序列线性方程组算法的一个降维技术
2.
We consider a mathematical program with linear complementary constraints (MPLCC).
线性互补约束优化问题(简称MPLCC)是一类特殊的非线性约束优化问题,其中存在由线性函数构成的互补约束项。
3.
Equilibrium problem with linear complementary constraints can be reformulated as the solution to a smoothing nonlinear system of equations by means of a complementary function and the smoothing approximation method.
利用一个新的互补函数及光滑近似法的思想将线性互补约束均衡问题转化为等价的光滑非线性方程组来求解。
6) MPCC
互补约束问题
1.
The main results are as following: A parameterized equivalent formulation of MPCC is obtained by using the La-grangian multiplier function, and an approach of modifying multiplier with the active-setproperty is presented.
利用Lagrange乘子函数建立了关于一般形式互补约束问题的含参等价非线性规划模型,并给出了具有积极集性质的乘子参数修正方法。
补充资料:公理化方法(见公理化和形式化)
公理化方法(见公理化和形式化)
axiomatical method
gongllbuafangfa公理化方法化和形式化。(axiomatieal method)见公理
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条