说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 混沌-分形
1)  chaos-fractal
混沌-分形
1.
The chaotic characteristics of pulse waveform in different aging stages for partial discharge pulse of point-plate in oil is analyzed based on chaos-fractal theory.
通过研究变压器油在120℃恒温老化箱内的加速老化情况,利用混沌-分形理论比较分析了各老化阶段后油中尖-板局放脉冲电流信号的混沌特性,通过计算比较脉冲电流信号的关联维数D(m)和Kolmogorov熵(KE),结合信号的频谱和功率谱密度分析,以及运用热重分析仪分析了变压器油老化的理化特性,结果表明不同的热老化阶段绝缘油中的放电脉冲电流信号具有不同的混沌特性,对应不同的理化特性,从而为变压器的故障监测提供了新的诊断方法。
2)  chaos-fractal
混沌分形
1.
Using the method of computer mathematic experiments,the nature of Misiurewicz points as the preperiodic points in M-J chaos-fractal spectrum and their distribution are studied.
利用计算机数学试验的方法研究了M-J混沌分形图谱中的准周期点——Misiurewicz点的性质及分布规律,得到了Misiurewicz点和M集周期芽孢的拓扑分布关系,给出Misiurewicz点和M集周期芽孢之间的递推公式,为进一步揭示M集的图像内部结构特征以及其内部的周期点、准周期点的性质提供了一个有益的探讨。
3)  chaos-fractal image
混沌分形图
1.
In this paper,various computer construction algorithms of generating chaos-fractal images based on IFS attractor are studied and their application range and limitation are analyzed.
研究了各类基于IFS吸引子的混沌分形图的计算机构造方法;分析了其应用范围和局限性,对构造混沌分形图的确定性算法、随机迭代算法、字符串替换法、逃逸时间算法和反函数迭代法进行了深入的探讨和对比分析;总结了混沌分形图构造的基本规律。
2.
The M-J chaos-fractal system constructed by polynomial function sets was extended to studying the generalized M set and J set, which are constructed by complex mapping z←sinz~2+c, so as to plot the chaos-fractal images of M and J sets by use of escape time algorithm.
推广了由多项式函数族构造的M J混沌分形系统,研究了复映射z←sinz2+c所构造的广义M集和J集,利用逃逸时间算法绘制了M集和J集的混沌分形图·通过大量计算机数学实验,找到了M集各主要周期芽苞的分布规律,并与具有典型意义的复映射z←z2+c所构造的M集进行了对比分析,指出了两者之间的异同·发现了复映射z←sinz2+c的广义J集的非连通特殊性,分析了图谱构成及周期点位置,指出其具有无穷嵌套、自相似的分形结构·通过研究各周期芽苞内的点所对应的J集分形图,得出了广义M集周期芽苞内点的周期数与相应J集吸引周期轨道周期数相等的结论,并讨论了M集与J集之间的对应关系
3.
The computer construction methods of IFS attractor chaos-fractal images are studied.
研究了各类基于 IFS 吸引子的混沌分形图的计算机构造方法,分析了其应用的范围和局限性,对构造混沌分形图的确定性算法、随机迭代算法、字符串替换法、逃逸时间算法和反函数迭代法进行了深入的探讨和对比分析,总结了混沌分形图构造的基本规律,并首次用 Java 语言实现了各种算法,给出了几种较为常用算法的迭代参数、公式及试验结果。
4)  fractal and chaos
分形与混沌
1.
Application of the fractal and chaos theory in fault diagnosis of rolling mill;
分形与混沌技术在轧机故障诊断中的应用
5)  chaos and fractals
混沌和分形
6)  Chaos and Fractal
混沌与分形
补充资料:分形学
Image:11487094080210593.jpg
分形学

谁创立了分形几何学?

1973年,曼德勃罗(b.b.mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。

分形几何与传统几何相比有什么特点:

⑴从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。

⑵在不同尺度上,图形的规则性又是相同的。上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。

什么是分维?

在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。

分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:

a^d=b, d=logb/loga

的关系成立,则指数d称为相似性维数,d可以是整数,也可以是分数。另一方面,当我们画一根直线,如果我们用0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1(大于0、小于2)。与此类似,如果我们画一个koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与koch曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数(即分数)了,所以存在分维。其实,koch曲线的维数是1.2618……。

fractal(分形)一词的由来

据曼德勃罗教授自己说,fractal一词是1975年夏天的一个寂静夜晚,他在冥思苦想之余偶翻他儿子的拉丁文字典时,突然想到的。此词源于拉丁文形容词fractus,对应的拉丁文动词是frangere(“破碎”、“产生无规碎片”)。此外与英文的fraction(“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。在70年代中期以前,曼德勃罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,撷英文之尾的fractal,本意是不规则的、破碎的、分数的。曼德勃罗是想用此词来描述自然界中传统欧几里德几何学所不能描述的一大类复杂无规的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花僚乱的满天繁星等。它们的特点是,极不规则或极不光滑。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条