说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 最小平方估计
1)  least squares estimation
最小平方估计
2)  pre-estimating minimum square error
预估计最小平方误差
3)  amplitude weighted least squares estimation
幅度加权最小平方估计
1.
Is presented an amplitude weighted least squares estimation of sample frequency offset in MIMO-OFDM systems.
分析了采样钟频率偏移对MIMO-OFDM系统接收信号的影响,提出了一种适用于MIMO-OFDM系统的采样钟频率偏移估计算法,即幅度加权最小平方估计法。
4)  least trimmed squares estimate
最小截平方和估计
5)  LS distribute algorithm
最小平方(LS)估计算法
6)  estimation of least median squares
最小中值平方估计
1.
Then the robust Mahalanobis distances of training samples with normal texture were calculated by using the fast algorithm for the estimation of least median squares.
利用最小中值平方估计的快速算法,获得正常织物纹理训练样本的稳健马氏距离,并应用契比晓夫不等式确定在一定置信度条件下判断待检织物为疵点的马氏距离的阈值。
补充资料:广义最小二乘估计
      用迭代的松弛算法对线性最小二乘估计的一种改进。线性最小二乘估计在模型误差为相关噪声时是有偏估计,即其估计值存在偏差。这时采用广义最小二乘估计能获得较精确的结果。
  
  假设所讨论的单输入单输出系统的差分方程模型是
  
  式中{uk}和{yk}分别是输入和输出序列:和是算子多项式,它们的系数是需要通过估计来求出的未知数;z-1是单位延迟算子;{ek}是误差序列,它是零均值平稳相关噪声序列。为了进行广义最小二乘估计可以从形式上把ek变换成,这里,它的系数也是未知的。如果{ek}具有有理谱密度,则可把{εk}当作白噪声序列来处理。这样就把系统模型变成
  
  
  
  相应的估计准则是
  
   
  广义最小二乘估计就是使估计准则J为极小的参数估计。多项式A(z-1)、B(z-1)和C(z-1)的系数都是未知的,所以不能用一个线性算法获得广义最小二乘估计。
  
  广义最小二乘估计采用迭代的松弛算法:先行固定C(z-1),估计A(z-1)和B(z-1),使J 趋于极小;然后固定A(z-1)和B(z-1),估计C(z-1),使 J 趋于极小。如此反复迭代,直至估计值收敛。这时每步只进行简单的线性最小二乘估计运算,迭代的初值取扗(z-1)=1。
  
  广义最小二乘估计算法的估计精度高,已得到应用并获得不少成果。它的缺点在于:当信噪比较小时,J可能有多个局部极小点,估计结果不能保证收敛到全局最小点,即参数真值;它的计算量也比线性最小二乘估计增加很多。
  
  这种算法也可推广到多输入多输出系统,并且有相应的近似递推估计算法。当误差{ek}为正态噪声序列时,这种算法还可以解释为极大似然估计的松弛算法。
  
  参考书目
   G.G.哥德温、R.L.潘恩著,张永光、袁震东译:《动态系统辨识:试验设计与数据分析》,科学出版社,北京,1983。(G.C.Goodwin and R.L.Payne,Dynamic System Identification:Experiment Design and Data Analysis, Academic Press, New York,1977.)

  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条