说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 下模函数
1)  submodular set function
下模函数
1.
This paper presents a new approximation algorithm for maximizing submodular set function under partition matroid constraint.
给出了求解剖分拟阵约束下,下模函数最大值问题的一种新的近似算法,这一算法是改进的贪婪算法,即将局部搜索法与贪婪算法相结合,使其整体具有更好的性能保证。
2.
The problem of maximizing a submodular set function with multiple constraints is considered,which has important application in combinatorial optimization theory.
提出了多维约束下下模函数最大值问题,分析其在组合优化中的重要应用。
2)  Submodular set function
下模集函数
3)  upper and lower function
上下函数
4)  lower convex function
下凸函数
1.
Based on conventional definition of lower convex function,the properties of lower convex function that are related to inequality proving are studied.
在下凸函数常规定义的基础上 ,研究了与不等式证明有关的下凸函数的性质 ;利用Jenven不等式证明了n取任意自然数时该性质的推广 ;并例举了该性质在不等式证明中的应
5)  the lower function
下限函数
6)  lower type function
下型函数
补充资料:模函数
      定义在单位圆(或上半平面)内部且以其周界为自然边界的某种特殊解析函数。解析函数的许多经典理论如整函数理论中的皮卡定理、正规族理论中的一些判定定理,都可借助模函数的性质来证明。
  
  如图1,在z平面中取单位圆│z│<1,在其周界上按反时针向依次任取三点A,B,C,并作一圆弧三角形ABC,其每边均与│z│=1正交,构成一区域D0(图中斜线区)。在w平面中实轴上取定三点α(=0),β(=1),γ(=∞)。由共形映射的黎曼定理,存在一单叶解析函数w =??(z),把D0映到w 的上半平面,并使A,B,C分别映到α,β,у。根据对称性原理,w =??(z)可解析开拓到圆弧三角形Dó中,这里Dó是D0关于AB 弧的对称反演区域(C点反演成圆周│z│=1上另一点C┡),而函数值则取在w 的下半平面,此下半平面与原上半平面沿线段αβ相粘连。同理,w=??(z)又可分别解析开拓到D0的关于CA弧和BC弧的对称圆弧三角形中,其函数值也在w 的下半平面中,它们分别与上半平面沿半直线 γα 和 βγ 相粘连。这样,得到了│z│<1中的一圆弧六边形区域,w =??(z)在其中解析,取值于整个w 平面中如上粘连的一个上半平面和三个下半平面。再以此六边形的各边进行反演,则w=??(z) 又可再次解析开拓到|z|< 1中边数更多的圆弧形区域中(仍在|z|<1内),取值又回到w 的上半平面,并与上面已取得的下半平面分别沿αβ,βу,уα之一相粘连。如此无限继续下去,则w =??(z)就开拓成为整个│z│< 1内的解析函数,其所取之值在w平面上形成一无限层的黎曼曲面。w =??(z)称为模函数。其反函数z=φ(w)是整个w平面除0,1,∞外的多值解析函数,或者可说成是上述黎曼曲面上的单值解析函数。
  
  模函数w =??(z)单值解析于|z|<1内,显然不取值0,1,∞,且当z从单位圆内部以任意方式趋于其周界上一点时,不可能有确定的极限值,因此|z|=1是其自然边界,即它不可能再向|z|=1之外进行解析开拓。
  
  也可用一分式线性变换t=ω(z),|z|<1,把z变到t平面的上半平面,使A,B,C 分别变成实轴的α,b以及с=∞,而D0变成区域墹 0(图2),当D0关于其一边界圆弧作对称反演时,相应地墹 0也关于其相应边作对称反演。
  
  设t=ω(z)的反函数为z=λ(t),则
  w =??(z)=??(λ(t))=φ(t)就把t的上半平面映成w平面的上述黎曼曲面。φ(t)也称为模函数,其性质本质上与??(z)相类似。
  
  如果把构成模函数w=??(z)过程中所作的种种关于圆弧的反演变换记为T1,T2,...,则对于任何Tj,??(z)与??(Tjz)互为共轭。因此,对任何两个Tj,Tk,恒有??(z)=??(TjTkz),即当z经过两次这类反演后,其函数值??(z)不变。如果把偶数个这种反演及其逆作为元素,它们生成一变换群G,则当z经G任一元变换后,函数值??(z)不变。称G为模函数w=??(z)的不变群,也称??(z)为关于群G 的自守函数(见椭圆函数)。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条