1) wavelet packet energy moment
小波包能量矩
1.
An improved feature extraction method based on wavelet packet energy moment is presented.
提出了一种基于卷积型小波包能量矩的特征提取方法。
2) Wavelet packet of sections and energy-moment
区间小波包能量矩
3) wavelet energy moment
小波能量矩
1.
The wavelet energy moment can reflect the distribution of signal energy in frequency domain and that in time domain indirectly as well.
信号能量的时频分布可以反映不同信号的本质区别,小波能量矩既可以反映信号能量在频域上的分布,也可以间接体现能量在时域上的分布。
5) wavelet packet energy
小波包能量
1.
A novel speech enhancement method based on wavelet packet energy in strong noise background
强噪声条件下基于小波包能量的语音增强新算法
2.
Gear fault classification based on Gaussian mixture model and wavelet packet energy
高斯混合模型与小波包能量相结合的齿轮故障分类
3.
The pressure signals of normal and abnormal combustion were decomposed by wavelet packet and the wavelet packet energy was extracted.
对氢发动机正常燃烧和异常燃烧压力信号进行了小波包分解,提取出小波包能量。
6) wavelet packet energy spectrum
小波包能量谱
1.
Alarming method for cable damage of long-span cable-stayed bridges based on wavelet packet energy spectrum;
基于小波包能量谱的大跨斜拉桥拉索损伤预警方法
2.
Recognition of floating particles in ampoules by wavelet packet energy spectrum and SVM
应用小波包能量谱及支持向量机实现安瓿内浮类异物的识别
3.
Influence of explosion parameters on energy distribution of blasting vibration signal based on wavelet packet energy spectrum
基于小波包能量谱爆炸参量对爆破振动信号能量分布的影响
补充资料:能量原理与能量法
能量原理与能量法
energy principles and energy methods
nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条