1) denoising wavelet-pocket energy method
去噪小波包能量法
1.
To improve the wavelet-pocket energy method,we presented a new one-denoising wavelet-pocket energy method.
对小波包能量法进行改进,提出了一种新的方法———去噪小波包能量法,该算法对信号小波去噪后,再用小波包能量法提取信号的特征;应用去噪小波包能量法研究了不同的小波去噪方法对水声信号分类识别率的影响,在实测信号样本集上用BP神经网络进行了识别实验。
2) wavelet packet denoising
小波包去噪
1.
The baseline shift and the noise in the extracted FECG are suppressed by the wavelet packet denoising technique.
首先利用回归支持向量机(Support vector regression machine,SVRM)拟合母体心电传导至腹壁所经历的非线性变换,然后将母体心电经由所拟合的非线性变换得到腹壁混合信号中的母体心电干扰的最优估计,再从腹壁混合信号中减去母体心电干扰的最优估计得到含噪声的胎儿心电,最后通过小波包去噪技术抑制胎儿心电中的基线漂移和噪声,得到清晰的胎儿心电。
2.
The baseline shift and noise in the FECG are suppressed by wavelet packet denoising technique.
利用径向基函数(radial basis function,RBF)神经网络估计母体心电信号传导至腹壁的非线性变换,将非线性变换后的母体心电信号从腹壁混合信号中减去,再通过小波包去噪技术抑制胎儿心电的基线漂移和噪声,得到清晰的胎儿心电。
3) wavelet packet analyzing denoising
小波包分析去噪
4) Wavelet Packet Threshold Denoising
小波包阈值去噪
5) wavelet-packet energy method
小波包能量法
1.
Improved the wavelet-packet energy method with nonlinear wavelet denoising technique and presented a new method:denoising wavelet-packet energy method.
应用非线性小波去噪技术对小波包能量法进行改进,提出了一种新的方法———去噪小波包能量法。
6) wavelet transform denoising
小波变换法去噪
补充资料:能量原理与能量法
能量原理与能量法
energy principles and energy methods
nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条