1) TAB(R,C) function
TAB(R,C)函数
2) r-convex function
r-凸函数
1.
A family of nonconvex functions——r-convex functions;
一类非凸函数——r-凸函数
2.
The conclusions that in proper restricted conditions,convex functions are r-convex functions were reached by introducing the conception of r-convex function.
r-凸函数是凸函数的一种推广形式,它完全包含了凸函数族。
3.
Based on the definition of r-convex function,a class of new Hadamard type inequalities is established,which generalizes the well-known Hadamard s inequality.
基于r-凸函数的定义,给出一类新的Hadam ard型不等式,从而推广著名的Hadam ard不等式;建立涉及高阶导数的Hadam ard型不等式,统一推广D ragom ir-Agarwal不等式和Pearce-Pecˇaric'不等式。
3) R-function
R-函数
4) digammar
双r函数
1.
In this paper,by using a simple algorithm of evaluntion for basic hyperometric series,several results of q-analogue of digammar for basic bypergeometric series are obtained.
通过运用基本超几何级数估计的算法,得到了基本超几何级数双r函数q模拟的几个结果。
5) r-excessive function
r-盈函数
6) r-invex function
r-invex函数
1.
The class of r-invex function with respect to y is an extension of invexity.
Antczak提出了一类非凸的可微函数并将其称为r-invex函数,它是invex函数的一种推广。
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条