1) combine management with education
管教结合
2) combination of teaching and management
教管结合
1.
The paper maintains that the combination of teaching and management is a creative and good exploration in building up a new management system, which is bound to exert a stimulating effect on training of the high quality personnel.
深化教管结合实践是一条创新之路 ,它是构建新的管理模式的有益探索 ,将对培养高素质创新人才产生一定的促进作
5) combination of sports and education
体教结合
1.
Policy Development of Combination of Sports and Education in Colleges and Universities of China;
我国高校体教结合政策的发展研究
2.
After the development of 20 years,the combination of sports and education in Shanghai has obtained some achievements,such as the system had been improved,the distribution of sport events and the structure of different level sport teams were reasonable,the level of coaches had raised and the fund had been partly solved.
上海市体教结合经过20年的发展,其制度建设得到进一步完善,运动项目布局、梯队结构趋于合理,教练员业务水平明显提高,经费紧张局面得到一定缓解,人才培养初显成效。
3.
In order to develop China competitive sports continuously after the Olympic period of 2008, we must explore the successful way of training the reserve athletes of competitive sports which is suitable for Chinese characteristics and advance timely the strategy change by the combination of sports and education in the new period.
要使我国竞技体育在2008年奥运会之后得到可持续发展,就必须探索新时期具有中国特色的竞技体育后备人才培养的成功之路,不失时机地推进其体教结合的战略转变。
6) combination of parents and teachers
家教结合
补充资料:非结合环与非结合代数
非结合环与非结合代数
on-associative rings and algebras
非结合环与非结合代数【珊心胭仪妇柱视血娜.d alge-b旧s;。eaceo””姗.oe.二、双a.幼。6P。」 具有两个二元运算+与,,除了可能不满足乘法结合律外,满足结合环与代数(a洛。clati记nn邵and目罗b璐)之所有公理的集合.非结合环与代数的第一批例子出现在19世纪中叶,是不结合的(Ca外呀数(c盯触yn山n1比IS)和更一般的超复数(h”姆rComp恤nUmber)).给定一个结合环(代数),如果用运算〔a,bl二ab一ba代替原有的乘法,其结果是一个非结合环(代数),这是个Lie环(代数).另一类重要的非结合环(代数)是Jo攻lan环(代数),它们可由在特征非2的域(或有1和1/2的交换的算子环)上的结合代数中定义运算a·b=(ab+ba)/2得到.非结合环与代数的理论已经发展成代数学的一个独立分支,展现出与数学的其它领域以及物理学、力学、生物学及其他学科的许多联系.这个理论的中心部分是熟知的拟结合环和代数(n比ly一别粥戊泊石wn刀乡缸记a】罗bras)的理论,它们有:Lie环和珠代数,交错环和交错代数,北攻坛幻环与Joltlan代数,MaJ几哪B环和Ma月五U口B代数,以及它们的某些推广(见Ue代数(Lieal罗bra);交错环与代数(司加叮必tiverm邵alld目罗b挑);J加止川代数(Jo攻协nal罗bIa);M幼城e。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条