1) weighting polynonial matrix
加权多项式矩阵
2) polynomial matrix
多项式矩阵
1.
In this paper, the concepts of the least common multiple of polynomial matrices and the prime polynomial matrix are introduced, and some algebraic properties of the greatest common divisor and of the least common multiple of polynomial matrices are given.
讨论了多项式矩阵最大公因子与最小公倍的有关性质,同时给出了多项式矩阵的分解定理。
2.
Based on the theory of polynomial matrix,it is implied that the right coprime of polynomialmatrices of the autoregressive part and moving-average part is only the necessary condition,not the suf-ficient condition to ensure that the model is the normalized form.
本文从多项式矩阵理论入手,指出多维时序模型的自回归部分多项式矩阵与滑动平均部分的多项式矩阵右互质,只是保证模型为典则型的必要条件,而不是充分条件,因此,为了获得多变量时序模型的典则型,必须限制模型的部分参数表达形式,因此提出了一种形式简单的多变量时序模型的典则型,并给出了实现的具体算法,还证明了该典则型自回归与滑动平均部分的多项式矩阵是右互质的。
3) matrix polynomial
矩阵多项式
1.
On square-rooting matrices of a kind of matrix polynomial
一类矩阵多项式的平方根矩阵问题
2.
The frequency criteria for Schur stability of matrix polynomials without expanding the determinants of the matrix polynomials has been proposed.
提出矩阵多项式Schur稳定的频域判据 ,可避免矩阵多项式的行列式展开 ,使多输入多输出离散时滞系统稳定性检验得以简
3.
Based on this,some identities of the rank of a class of matrix polynomials were obtained.
给出了矩阵秩的Frobenius不等式取等号的一个充分条件,在此基础上获得了一类矩阵多项式秩的恒等式。
4) multivariate matrix polynomials
矩阵多元多项式
1.
Based on the pseudo-division algorithm for multivariate matrix polynomials,a new solving process of characteristic series for algebraic polynomial systems is given.
基于矩阵多元多项式的带余除法,给出了代数情形多项式组特征列的一种新求法,并举例验证了这种方法的有效性。
5) multiple polynomial matrix
多元多项式矩阵
6) weighted polynomial
加权多项式
1.
The closed-loop stability isguaranteed by the added weighted polynomials in the performance index and the conditionthat the predictive horizon is greater than the transitive horizon plus the control horizon.
讨论加权广义预测控制算法(WGPC),通过定义过渡时域和在性能指标中引入加权多项式,限制预涮时域大于控制时域与过渡时域的和,保证了预测控制算法的稳定性;给出了控制增量的表达式。
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条