1) limit distribution of likehood ratio
似然比极限分布
2) limit logarithmic likelihood ratio
极限对数似然比
1.
In this paper,the notion of limit logarithmic likelihood ratio of stochastic sequences,as a measure of "dissimilarity" between their joint distributions and the product of their marginals,is introduced.
引用极限对数似然比的概念作为任意随机序列联合分布与其边缘分布“不相似性”的度量,构造几乎处处收敛的上鞅,讨论了任意离散随机序列的强偏差定理。
3) Random limit logarithmic likelihood ratio
随机极限对数似然比
4) Limit random logarithmic likelihood ratio
极限随机对数似然比
5) limit relative log-likelihood ratio
极限相对对数似然比
1.
By use of limit relative log-likelihood ratio, truncation method of random variables and martingale, the property of sequences of dependent continuous and discrete random variables is discussed, and a class of strong deviation theorems which are represented by inequalities are obtained.
通过极限相对对数似然比,利用随机变量截尾的方法并结合勒这一工具研究相依连续型和离散型随机变量序列的性质,得到一类用不等式表示的强偏差定理。
6) polarimetric test statistic
极化似然比
1.
Change detection based on polarimetric test statistic for multi-polarization SAR imagery
基于极化似然比的极化SAR影像变化检测
补充资料:似然比检验
分子式:
CAS号:
性质:假设总体X是连续型的,其密度是p(x),则x1,x2,…,xn,的联合密度为g(x1,x2,…,xn)= p(x1)。关于样本的密度函数g(Xl,X2,…Xn;θ)有两个假设,H0:g(x1,x2,…xn;θ0)=p(xi, θ0)和H1:g(x1,x2,…xn;θ1)=p (xi;θ1)。统计量L(X1,X2,…,Xn)=称为假设H0对H1的检验问题的似然比。以似然比作统计量的检验,称作似然比检验。
CAS号:
性质:假设总体X是连续型的,其密度是p(x),则x1,x2,…,xn,的联合密度为g(x1,x2,…,xn)= p(x1)。关于样本的密度函数g(Xl,X2,…Xn;θ)有两个假设,H0:g(x1,x2,…xn;θ0)=p(xi, θ0)和H1:g(x1,x2,…xn;θ1)=p (xi;θ1)。统计量L(X1,X2,…,Xn)=称为假设H0对H1的检验问题的似然比。以似然比作统计量的检验,称作似然比检验。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条