2) long memory stochastic volatility(LMSV)
长记忆随机波动(LMSV)过程
3) LMSCD model
长记忆随机条件持续期模型
1.
Thereafter,making use of the ultra high frequency durations data in Shanghai stock market,the authors construct three different LMSCD models,which are for trade durations LMSCD,price durations LMSCD and volume durations LMSCD,respectively and testify the existence of long memory in ultra-high frequency durations series.
文章针对股票市场的超高频持续期序列,提出了长记忆随机条件持续期模型(LMSCD),并给出了模型参数的极大谱似然函数估计方法。
4) Long memory model
长记忆模型
1.
In this paper, we introduce long memory model and it s test methods.
本文介绍了长记忆模型及其检验方法,根据Bayes原理,提出了记忆参数的一种新的估计方法。
5) long memory of volatility
波动长记忆性
1.
Estimation and test of long memory of volatility;
基于小波变换的LMSV模型波动长记忆性估计与检验
6) stochastic volatility model
随机波动模型
1.
Research on volatility persistence and co-persistence in stochastic volatility model;
随机波动模型的持续性和协同持续性研究
2.
Though two important stylized facts about return distribution are seen commonly in financial markets: skewness and fat-tail,most of the stochastic volatility models at present cannot describe those facts as a whole.
金融资产的收益分布普遍展现出两个重要的典型特征:"有偏"性和"胖尾"性,但目前绝大多数的随机波动模型都无法同时将上述两类典型特征综合纳入其估计的条件分布假定中。
3.
In this paper,A new markov chain monte carlo algorithm for estimating stochastic volatility model is given.
研究用马尔科夫链蒙特卡罗(MCMC)算法估计随机波动模型的参数问题。
补充资料:有限记忆随机点过程
有限记忆随机点过程
ed memory stochastic point process with limi-
有限记忆随机点过程lst曲as康训加t碑戊ess初thl诵i-tedlr比n.ry;c“y伟浦妞u蓝To呵e巧“u认nPo双eee eo「pa-““呵e“HuM noc几e月e益cTB“eMI 一个由一列随机变量毛t,}, 一
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条