1) Mann-type and Ishkawa-type iterations
Mann迭代Ishkawa迭代
2) Mann iterative
Mann迭代
1.
The convergence of Mann iterative sequences of solutions for some mixed monotone operator equations;
一类混合单调算子方程解的Mann迭代序列的收敛性
2.
The convergence of Mann iterative sequences of solutions for some nonlinear operator equations
一类非线性算子方程解的Mann迭代序列的收敛性
3.
The existence and uniqueness of random fixed point of random non-monotone binary operator equations without compactness conditions was studied by using the cone theory and Mann iterative technique,and the iteration sequences which converge to solution of operator equations and the error estimates were also given.
利用Mann迭代技巧,讨论了不具有紧性条件的随机非单调二元算子方程随机不动点的存在唯一性,并给出了迭代序列收敛于解的误差估计,所得结果是某些已知结果的本质改进和推广。
3) Mann iteration
Mann迭代
1.
Mann Iteration Process for Certain Nonlinear Mappings in q -uniformaly Smooth Banach Spaces;
q一致光滑Banach空间中一类非线性映射的Mann迭代过程
2.
In quniformly smooth Banach,it is investigated that the convergence of Mann iteration for generalized Lipschitzian Φ pseudo contractive and accretive mappings,which improves and extends corresponding present results.
在q一致光滑Banach空间中,研究了一类广义LipschitzΦ-伪压缩映射和Φ-增生映射的Mann迭代收敛问题,所得结果改进和扩展了目前许多相关结果。
3.
In this paper,we establish the equivalence between the convergence of Mann iteration with errors with the convergence of Ishikawa iteration with errors,where T is an uniformly continuous strongly pseudo-contractive mapping.
建立了Mann迭代和带误差的Ishikawa迭代收敛于T的不动点的等价性,其中T是一致连续强伪压缩映射。
4) Mann iterative sequence
Mann迭代列
1.
The construction and convergence of Mann iterative sequence for nonexpansive mapping with boundary condition;
带边界条件的非扩张映射的Mann迭代列的构造及收敛性
5) Mann type iterative
Mann型迭代
1.
Next, some Mann type iterative ap-proximation sequences with errors for these nonoscillatory solutionsare constructed and the error estimates between the approximate so-lutions and the nonoscillatory solutions are also discussed.
随后本文给出了这些非振荡解带误差的Mann型迭代逼近序列并讨论了逼近解和非振荡解之间的误差估计并得到解决这类新的高阶非线性时滞微分方程的不可数多个解的充分条件。
6) Ishikawa iterative and Mann iterative
Ishikawa迭代和Mann迭代
补充资料:迭代
迭代
iterate
迭代【ite口te;.什pa”11。] 重复应用某种数学运算的结果.这样,如果 y=f(x)三f,(x)是x的函数,则函数 fZ(x)=f[f;(x)」,…,f。(x)=f【f。一:(x)』顺次称为f(x)的二次,…,n次迭代(j记m记).例如,令f(x)=x‘,就得到 fZ(x)=(x“)一x·,, f。(x)=(x‘’一’)“=x““.指标”称为迭代的拳攀(Cxponent),而从f(‘)转移到fZ(x),f,(x),…也称为迭代(ite瑙如n).可以对某种函数类定义具有任意实指数甚至复指数的迭代.迭代用于通过迭代方法求解各种方程或方程组.详见序列逼近法(seq谬ntialappro劝na石on,兹心山记of).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条