1) Ishikawa and Mann iterative sequences
Ishikawa和Mann迭代序列
1.
A Lipschitz strictly pseudocontractive map from a nonempty closed convex subset of a Hilbert space into itself was showed to have fixed points,Ishikawa and Mann iterative sequences with errors of a Lipschitz strictly pseudocontractive map was introduced and the iteration processes strongly converges to a fixed point was proved.
证明了在Hilbert空间中的非空闭凸集上Lipschitz严格伪压缩映象有不动点,介绍了Lips-chitz严格伪压缩映像下的的具误差的Ishikawa和Mann迭代序列并证明了其强收敛性于不动点,其结果把非扩张映像推广到Lipschitz严格伪压缩映象上,改进了一些相关结果。
2) Ishikawa(Mann) iterative sequence
Ishikawa(Mann)迭代序列
3) Mann and Ishikawa Iterative process
Mann和Ishikawa迭代程序
4) Ishikawa and Mann iterative processes with error
具误差的Ishikawa迭代序列和Mann迭代序列
1.
It is shown that Ishikawa and Mann iterative processes with error are equivalent for uniformly pseudo-contractive mappings by the means of normal dual mapping.
利用正规对偶映射的性质,证明了在一致伪压缩映射条件下具误差的Ishikawa迭代序列和Mann迭代序列的等价性问题,得到了具误差的Ishikawa迭代序列和Mann迭代序列均收敛于一致伪压缩映射的不动点。
5) Mann and Ishikawa process
Mann和Ishikawa迭代
6) Ishikawa and Mann iterative processes
Ishikawa和Mann迭代
1.
It is proved that a continuous m-accretive operator on a real smooth Banach space is single-valued and the Ishikawa and Mann iterative processes with errors converge strongly to the unique solution of the equation z=Sx+λAx for given z∈X and λ≥0.
设X是光滑Banach空间,A:X→X是一致连续的m-增生算子,S:X→X是一致连续的φ--强增生算子,本文证明实光滑Banach空间上连续的m-增生算子是单值的且具误差的Ishikawa和Mann迭代序列强收敛到方程z=Sx+λAx的唯一解,其中z∈X,λ≥0。
补充资料:迭和
1.互相唱和。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条