1) ultimate ladder-type evaluation
终级阶梯式问题赋值法
2) terminal value problem
终值问题
1.
Generalized solutions on terminal value problems for ordinary differential equations in Banach spaces;
Banach空间常微分方程终值问题的广义解
2.
Existence of the solutions of terminal value problems for first order differential equation on infinite interval in Banach spaces;
无穷区间上Banach空间常微分方程终值问题解的存在性
3.
Existence of solutions of terminal value problems for first-order differential equations in Banach space;
Banach空间一阶微分方程终值问题解的存在性
3) terminal value problems
终值问题
1.
And then apply this result to the terminal value problems of first order differential equations.
在非常弱的条件下证明了非线性积分方程的唯一解可以由迭代序列的一致极限得到,并给出了逼近解的迭代序列的误差估计式,然后应用到无穷区间一阶微分方程的终值问题,本质改进(将紧型条件删去)并推广了一些结果。
2.
By applying it,the existence of solutions of terminal value problems for second order differential equation is proved.
给出了无穷区间上一类抽象连续可微函数族相对紧性判定的一个充要条件,并应用它获得了二阶微分方程终值问题解的存在性。
3.
By using of the new comparison principle and the order theory, the author investigates the existence of maximal and minimal solutions of terminal value problems for second order nonlinear integro-differential equation in Banach space, obtains the new results.
利用新的比较定理和半序理论,研究Banach空间二阶非线性积分-微分方程终值问题最小解和最大解的存在性,获得了新的结果。
4) class problem
阶级问题
1.
This paper mainly dissertates the definition of the nation and class,indicating that nation problem and class problem tie in each other as well as different.
本文通过民族与阶级概念的界定,指出了在阶级社会里,民族问题与阶级问题既相互联系又相互区别,民族问题的实质是阶级问题。
5) valuationally decided formula question
赋值决定公式问题
1.
The valuationally decided formula question (briefly, VDF question) has been proposed and solved in classical 2-valued propositional logic and Lukasiewicz 3-valued propositional logic, which are non-fuzzy versions of fuzzy modus ponens in classical logics.
为在经典逻辑学中建立Fuzzy分离规则的推理模式,由赋值决定公式问题(简称VDF问题)已经提出,并已于二值命题逻辑以及三值Lukasiewicz命题逻辑中得到了解决,但当w>3时,VDF问题相当复杂且尚未解决。
6) discontinuous terminal value problem
不连续终值问题
补充资料:微分边值问题的差分边值问题逼近
微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems
微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条