说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 二阶边值问题
1)  second-order boundary value problem
二阶边值问题
1.
For all natural number m and increasing operator G,we consider the existence of solutions for a class of second-order boundary value problems(BVP):((G(y))′+p(t)ym)′+q(t)f(t,y)=p′ym, 0<t<1,y(0)=0,y(1)=b0>0.
利用Lery-Schauder不动点定理讨论了当m是一切自然数,G是一般的增算子时二阶边值问题((G(y))′+p(t)ym)′+q(t)f(t,y)=p′ym,00解的存在性。
2.
By using the fixed point theorems in cones the existence of positive solutions for the second-order boundary value problems u″+λf(t,u)+μg(t,u)=0,αu(0)-βu′(0)=0, γu(1)+δu′(1)=0 which nonlinear f,g are both semipositone is obtained under the condition that f,g are all super-linear(sub-linear),or one is super-linear, the other is sub-linear.
利用锥上的不动点定理,在非线性项f,g半正并允许下方可以无界的情形下研究了一类非线性二阶边值问题u″+λf(t,u)+μg(t,u)=0,αu(0)-βu′(0)=0,γu(1)+δu′(1)=0,在非线性项f与g满足更广的同为超(次)线性和一个为超线性一个为次线性的情形下得到了边值问题的正解,推广,改进和统一了一些已知的结果。
2)  Second order boundary value problem
二阶边值问题
3)  second order Neumann boundary value problem
二阶Neumann边值问题
1.
The method of quasi-upper and lower solution for second order Neumann boundary value problems in Banach space;
Banach空间中二阶Neumann边值问题的一种拟上下解方法
4)  Second order two-point boundary value problem
二阶二点边值问题
5)  singular nonlinear two-order boundary value problem
二阶奇异边值问题
1.
By using Lerary-Schauder principle,a positive solution to a singular nonlinear two-order boundary value problem is considered.
应用Lerary-Schauder原理研究一类二阶奇异边值问题,在满足一定条件下,至少存在一个正解y,y∈C[0,1]∩C2(0,1)且py′∈C[0,1],f(t,y,py′)在y=0,t=0或t=1处有奇性。
6)  second-order four-point boundary value problem
二阶四点边值问题
1.
Existnece of concave positive solution for second-order four-point boundary value problem;
一类二阶四点边值问题凸正解的存在性
补充资料:微分边值问题的差分边值问题逼近


微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems

  微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的1,则无论取什么范数都无收敛性.如果;簇1,且范数为 !lu‘}!,=suo}“几}.则问题(2)是稳定的,因而有收敛性(见[2],[3]): 11[uL一价l,认=O(内). 差分问题代替微分问题是用计算机近似求解微分边值问题的最通用的方法之一(见【7]). 微分问题用其差分的近似代替开始于!l],【2]和[41等著作.这一方法有时还用来证明微分问题解的存在,按下述方案进行,先证明微分边值问题的差分近似的解。*的集合对h是紧的,然后即可证明某一子序列u‘在h*~0时的极限是微分问题的解认如果该解已知是唯一的,则不仅子序列,而且整个u。集在h~0时都收敛到解u.【补注】补充的参考文献见微分算子的差分算子通近(aPpoximation of a di亚rential operator by diffe-ren沈operators)的参考文献.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条