1) modulus of determinant
行列式的模
2) the norm of determinant
行列式模
1.
The concepts of complex metapositive definite matrix and complex generalized positive definite matrix are presented,several inequalities of the norm of determinant are established,thus Ostrowski Taussky s inequality and Oppenheim s theorem are generalized.
给出复亚正定矩阵和复广义正定矩阵的概念,建立了它们的行列式模的几个不等式,推广了Ostrowski-Taussky不等式和Oppenheim定
3) the lower bound of the determinant module
行列式的模的下界
1.
Furthermore, a new estimation of the lower bound of the determinant module on the Hadamard product of a Hermitian positive definite matrix and a quasi-generalized complex positive definite matrix is obtained by using the improvement and the properties of quasi-generalized complex positive definite matrices.
这些结果不仅推广和改进了有关拟复广义正定矩阵的Hadamard乘积的行列式的模的下界估计的文献,而且概括了关于实正定矩阵和亚正定矩阵Hadamard乘积的行列式的下界估计的Oppenheim型不等式。
4) terms of determinantal expansion
行列式的项
6) rank of a determinant
行列式的秩
补充资料:N阶行列式
设有n2个数,排成n行n列的表 ,作出表中位于不同行不同列的n个数的乘积,并冠以符号(-1)t,的形式如下的项,其中为自然数1,2,...,n的一个排列,t为这个排列的逆序数.由于这样的排列共有n!个,这n!项的代数和称为n阶行列式
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条