1) enough column rank
满列秩
2) Column Full Rank Matrices
列满秩阵
1.
On the base of matricial rank,the author introduce two special matrices,row full rank matrices and column full rank matrices.
以矩阵的秩为基础,给出了两种特殊的矩阵:行满秩阵和列满秩阵,并对照矩阵的性质给出了行(列)满秩阵的几条性质,在此基础上研究了线性方程组AX=B对任一m维列向量B都有解的充要条件,进一步给出了矩阵方程AX=B有唯一解的条件。
3) full column rank
列满秩
1.
The remarkable characteristic of this method is its applicability for full column rank or not.
鉴于概括平差模型的参数系数矩阵可能为非列满秩的情况,本文从概括平差模型实质出发提出一种以解方程组为基础的通用解法,该方法显著的特点是无论系数矩阵是否为列满秩均可求解。
2.
Given the coefficient matrix of generalization adjustment model is possibly insufficient columm rank,we proposed how to make the coefficient matrix full column rank and found that each unknown parameter at least appeares one time in the general conditional expression,which can make the coefficient matrix full column rank.
分析了概括平差模型系数矩阵可能出现非列满秩情况的原因,研究了如何使系数矩阵为列满秩矩阵,避免了系数矩阵为非列满秩时的复杂解算过程。
4) column(row) full ring matrix
列(行)满秩阵
5) column(line)nonsingular matrix
列(行)满秩矩阵
6) Full rank
满秩
1.
The exploration for projective transformation of non-full rank and full rank;
非满秩与满秩射影变换的探索
2.
Elementary transformation method of full rank decomposition of matrix and triangular decomposition of strongly full rank matrix;
矩阵的满秩分解和强满秩矩阵的三角分解的初等变换法
3.
Its full rank reachability algorithm and realization is given.
通过对Petri网可达性的分析,给出满秩Petri网可达性算法及其实现过程,在VC++平台上对算法进行验算,并对算法运行结果进行可达性讨论;该算法为满秩Petri网可达性的判定提供了一种快速有效的求解方法。
补充资料:列秩
1.按品级排列。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条